References
- Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1. https://doi.org/10.1149/1.1836378
- Read, J. J. Electrochem. Soc. 2002, 149, A1190. https://doi.org/10.1149/1.1498256
- Beattie, S. D.; Masolescu, D. M.; Blair, S. L. J. Electrochem. Soc. 2009, 156, A44. https://doi.org/10.1149/1.3005989
- Kowalczk, I. Read, J.; Salomon, M. Pure Appl. Chem. 2007, 79, 851. https://doi.org/10.1351/pac200779050851
- Read, J. J. Electrochem. Soc. 2006, 153, A96. https://doi.org/10.1149/1.2131827
- Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Angew. Chem. Int. 2008, 47, 4521. https://doi.org/10.1002/anie.200705648
- Ogasawara, T.; Debart, A.; Holzapfel, M.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. https://doi.org/10.1021/ja056811q
- Kuboki, T. Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766. https://doi.org/10.1016/j.jpowsour.2005.03.082
- Zhang, S. S.; Foster, D.; Read, J. J. Power Sources 2010, 195, 1235. https://doi.org/10.1016/j.jpowsour.2009.08.088
- Tran, C.; Yang, X. Q.; Qu, D. J. Power Sources 2010, 195, 2057. https://doi.org/10.1016/j.jpowsour.2009.10.012
Cited by
- Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries vol.133, pp.47, 2011, https://doi.org/10.1021/ja208608s
- All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries vol.4, pp.8, 2011, https://doi.org/10.1039/c1ee01496j
- Lithium-Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint vol.2, pp.7, 2012, https://doi.org/10.1002/aenm.201200020
- Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries vol.22, pp.17, 2012, https://doi.org/10.1002/adfm.201200403
- A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery vol.15, pp.28, 2013, https://doi.org/10.1039/c3cp50930c
- The development and challenges of rechargeable non-aqueous lithium–air batteries vol.4, pp.1, 2013, https://doi.org/10.1080/19475411.2012.659227
- Key scientific challenges in current rechargeable non-aqueous Li–O2 batteries: experiment and theory vol.16, pp.24, 2014, https://doi.org/10.1039/c4cp01309c
- A novel monoclinic manganite/multi-walled carbon nanotubes composite as a cathode material of lithium-air batteries vol.59, pp.24, 2014, https://doi.org/10.1007/s11434-014-0396-1
- Batteries vol.9, pp.9, 2014, https://doi.org/10.1002/asia.201402191
- Demonstration of highly efficient lithium–sulfur batteries vol.3, pp.8, 2015, https://doi.org/10.1039/C4TA06641C
- Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery vol.39, pp.8, 2015, https://doi.org/10.5916/jkosme.2015.39.8.838
- A review of cathode materials and structures for rechargeable lithium–air batteries vol.8, pp.8, 2015, https://doi.org/10.1039/C5EE00838G
- Lithium-Sulfur Batteries with High Rate and Cycle Performance by using Multilayered Separators coated with Ketjen Black vol.5, pp.4, 2016, https://doi.org/10.1002/ente.201600411
- Carbon-Based Electrodes for Lithium Air Batteries: Scientific and Technological Challenges from a Modeling Perspective vol.2, pp.10, 2013, https://doi.org/10.1149/2.012310jss
- Optimization of Catalytically Active Sites Positioning in Porous Cathodes of Lithium/Air Batteries Filled with Different Electrolytes vol.162, pp.14, 2015, https://doi.org/10.1149/2.0861514jes
- Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries vol.56, pp.12, 2010, https://doi.org/10.1016/j.electacta.2011.02.072
- 리튬-공기전지용 탄소/망간산화물 복합구조 공기극의 전기화학적 특성 vol.15, pp.3, 2010, https://doi.org/10.5229/jkes.2012.15.3.198
- The impact of nano-scaled materials on advanced metal-air battery systems vol.2, pp.4, 2010, https://doi.org/10.1016/j.nanoen.2012.11.016
- Electrochemical performance of surface modified CNF/Co3O4 composite for Li-air batteries vol.33, pp.3, 2014, https://doi.org/10.1007/s10832-014-9957-6
- Influence of carbon pore size on the discharge capacity of Li-O2batteries vol.2, pp.31, 2010, https://doi.org/10.1039/c4ta01745e
- The First Introduction of Graphene to Rechargeable Li–CO2 Batteries vol.127, pp.22, 2015, https://doi.org/10.1002/ange.201501214
- The First Introduction of Graphene to Rechargeable Li–CO2 Batteries vol.54, pp.22, 2010, https://doi.org/10.1002/anie.201501214
- Advances in Manganese‐Based Oxides Cathodic Electrocatalysts for Li–Air Batteries vol.28, pp.15, 2010, https://doi.org/10.1002/adfm.201704973
- Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization vol.54, pp.3, 2010, https://doi.org/10.1021/acs.accounts.0c00772