References
- Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
- Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati,B. Nature Mater. 2009, 9, 621.
- Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009,194, 601. https://doi.org/10.1016/j.jpowsour.2009.06.089
- Fernicola, A.; Croce, F.; Scrosati, B.; Watanabe, T.; Ohno, H. J. Power Sources 2007, 174, 342. https://doi.org/10.1016/j.jpowsour.2007.09.013
- Reale, P.; Fernicola, A.; Scrosati, B. J. Power Sources 2009, 194, 182. https://doi.org/10.1016/j.jpowsour.2009.05.016
- Yim, T.; Lee, H. Y.; Kim, H. J.; Mun, J.; Kim, S.; Oh, S. M.; Kim,Y. G. Bull. Korean Chem. Soc. 2007, 28, 1567. https://doi.org/10.5012/bkcs.2007.28.9.1567
- Shin, J. H.; Cairns, E. J. J. Power Sources 2008, 177, 537. https://doi.org/10.1016/j.jpowsour.2007.11.043
- Larush, L.; Borgel, V.; Markevich, E.; Haik, O.; Zinigrad, E.; Aurbach,D. J. Power Sources 2009, 189, 217. https://doi.org/10.1016/j.jpowsour.2008.09.099
- Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt,M. J. Power Sources 2009, 189, 331. https://doi.org/10.1016/j.jpowsour.2008.08.099
- Hassoun, J.; Fernicola, A.; Navarra, M. A.; Panero, S.; Scrosati,B. J. Power Sources 2010, 195, 574. https://doi.org/10.1016/j.jpowsour.2009.07.046
- Eo, S. M.; Cha, E.; Kim, D. W. J. Power Sources 2009, 189, 766. https://doi.org/10.1016/j.jpowsour.2008.08.008
- Xu, K.; Ding, M. S.; Zhang, S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2002, 149, A622. https://doi.org/10.1149/1.1467946
- Sivakkumar, S. R.; MacFarlane, D. R.; Forsyth, M.; Kim, D. W. J. Electrochem. Soc. 2007, 154, A834. https://doi.org/10.1149/1.2750443
- Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, Z. J. Electrochem. Soc. 1995, 142, 885.
- Ein-Eli, Y.; Thomas, S. R.; Chadha, R.; Blakley, T. J.; Koch, V. R.J. Electrochem. Soc. 1997, 144, 823. https://doi.org/10.1149/1.1837495
- Mogi, R.; Inaba, M.; Jeong. S.-K.; Iriyama, Y.; Abe, T.; Ogumi, Z.J. Electrochem. Soc. 2002, 149, A1578. https://doi.org/10.1149/1.1516770
- Sato, T; Maruo, M.; Marukane, S.; Takagi, K. J. Power Sources 2004, 138, 253. https://doi.org/10.1016/j.jpowsour.2004.06.027
- Ota, H; Sakata, Y; Otake, Y; Shima, K.; Ue, M.; Yamaki, J. J. Electrochem. Soc. 2005, 151, A1778. https://doi.org/10.1149/1.1798411
- Zhang, S. S. J. Power Sources 2006, 162, 1379. https://doi.org/10.1016/j.jpowsour.2006.07.074
- El Ouatani, L.; Dedryvere, R.; Siret, C.; Biensan, P.; Gonbeau, D.J. Electrochem. Soc. 2009, 156, A468. https://doi.org/10.1149/1.3111891
- Holzapfel, M.; Jost, C.; Prodi-Schwab, A.; Krumeich, F.; Wursig,A.; Buqa, H.; Novak, P. Carbon 2005, 43, 1488. https://doi.org/10.1016/j.carbon.2005.01.030
- Katayama, Y.; Yukumoto, M.; Miuta, T. Electrochem. Solid State Lett. 2003, 6, A96. https://doi.org/10.1149/1.1566213
- Zheng, H.; Jiang, K.; Abe, T.; Ogumi, Z. Carbon 2006, 44, 203. https://doi.org/10.1016/j.carbon.2005.07.038
- Funabiki, A.; Inaba, M.; Ogumi, Z. J. Power Sources 1997, 68,227. https://doi.org/10.1016/S0378-7753(96)02556-6
- Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.;Heider, U.; Heider, L. J. Electrochem. Soc. 1999, 146, 1279. https://doi.org/10.1149/1.1391759
- Baba, Y.; Okada, S.; Yamaki, J. Solid State Ionics 2002, 148, 311. https://doi.org/10.1016/S0167-2738(02)00067-X
- Sakabe, H.; Matsumoto, H.; Tatsumi, K. Electrochim. Acta 2007,53, 1048. https://doi.org/10.1016/j.electacta.2007.02.054
Cited by
- Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.608
- Triethylbutylammonium bis(trifluoromethanesulphonyl)imide ionic liquid as an effective electrolyte additive for Li-ion batteries vol.19, pp.6, 2013, https://doi.org/10.1007/s11581-012-0820-y
- Allyl cyanide as a new functional additive in propylene carbonate-based electrolyte for lithium-ion batteries vol.19, pp.8, 2013, https://doi.org/10.1007/s11581-013-0844-y
- Evaluation of the wetting time of porous electrodes in electrolytic solutions containing ionic liquid vol.43, pp.7, 2013, https://doi.org/10.1007/s10800-013-0558-x
- Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries vol.15, pp.10, 2014, https://doi.org/10.1002/cphc.201402175
- Composition and Temperature Dependence of Density, Surface Tension, and Viscosity of EMIM DEP/MMIM DMP + Water + 1-Propanol/2-Propanol Ternary Mixtures and Their Mathematical Representation Using the Jouyban–Acree Model vol.59, pp.8, 2014, https://doi.org/10.1021/je400576e
- Energy applications of ionic liquids vol.7, pp.1, 2014, https://doi.org/10.1039/C3EE42099J
- Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator–Electrolyte Interface in Battery Electrochemistry vol.7, pp.22, 2015, https://doi.org/10.1021/acsami.5b00496
- LiFePO4/Li Batteries with Mixtures of Carbonate and Ionic Liquid [EMIM]+[TFSI]- as High Properties and Safety Electrolyte vol.275-277, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.275-277.2375
- Battery Electrolytes Based on Unsaturated Ring Ionic Liquids: Conductivity and Electrochemical Stability vol.160, pp.9, 2013, https://doi.org/10.1149/2.045309jes
- Thin Film Solid Electrolyte vol.162, pp.10, 2015, https://doi.org/10.1149/2.0501510jes
- ][FTFSI] Ionic Liquid Electrolytes vol.11, pp.12, 2018, https://doi.org/10.1002/cssc.201702288
- Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries vol.56, pp.27, 2011, https://doi.org/10.1016/j.electacta.2011.09.009
- Electrochemical behavior of organic radical polymer cathodes in organic radical batteries with N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid electrolytes vol.66, pp.None, 2012, https://doi.org/10.1016/j.electacta.2012.02.003
- Spectroscopic and computational analysis of the molecular interactions in the ionic liquid ion pair [BMP]+[TFSI]- vol.175, pp.None, 2010, https://doi.org/10.1016/j.molliq.2012.09.001
- Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries vol.1, pp.29, 2013, https://doi.org/10.1039/c3ta11553d
- ‘Bucky gel’ of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors vol.24, pp.46, 2010, https://doi.org/10.1088/0957-4484/24/46/465704
- A Comprehensive Study on Rechargeable Energy Storage Technologies vol.13, pp.4, 2010, https://doi.org/10.1115/1.4036000
- Passivation behaviour of aluminium current collector in ionic liquid alkyl carbonate (hybrid) electrolytes vol.2, pp.1, 2010, https://doi.org/10.1038/s41529-018-0033-6
- Specifically Designed Ionic Liquids-Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior vol.3, pp.2, 2019, https://doi.org/10.3390/chemengineering3020058