DOI QR코드

DOI QR Code

'One Pot' Synthesis of 2-Amino-3-cyano-4,6-diarylpyridines under Ultrasonic Irradiation and Grindstone Technology

  • Gupta, Ragini (Department of Chemistry, Malaviya National Institute of Technology) ;
  • Jain, Anshu (Department of Chemistry, Malaviya National Institute of Technology) ;
  • Jain, Meenakshi (Department of Chemistry, University of Rajasthan) ;
  • Joshi, Rahul (Department of Chemistry, University of Rajasthan)
  • Received : 2010.08.10
  • Accepted : 2010.09.04
  • Published : 2010.11.20

Abstract

A simple facile 'one pot' synthesis of 2-amino-3-cyano-4,6-diarylpyridine derivatives via three component reaction of chalcone, malanonitrile and ammonium acetate under ultrasonic irradiation and grindstone technology. All the synthesized compounds have been characterized on the basis of their elemental analyses and spectral data (IR, $^1H$ NMR, $^{13}C$ NMR and Mass).

Keywords

References

  1. Krohnke, K. Synthesis 1976, 1.
  2. Katritzky, A. R.; Elisseou, E. M.; Patel, R. C.; Plau, B. J. Chem. Soc., Perkin Trans. 1 1982, 125.
  3. Steenwinkel, P.; James, S. L.; Grove, D. M.; Kooijman, H.; Spek,A. L.; Koten, G. V. Organometallics 1997, 16, 513. https://doi.org/10.1021/om960943y
  4. Neve, F.; Campagna, S.; Crispini, A. Inorg. Chem. 1997, 36, 6150. https://doi.org/10.1021/ic9703540
  5. Cave, G. W. V.; Hallett, J.; Errington, W.; Rourke, J. P. Angew. Chem. 1998, 23, 3466
  6. Cave, G. W. V.; Hallett, J.; Errington, W.; Rourke, J. P. Angew. Chem., Int. Ed. 1998, 37, 3270. https://doi.org/10.1002/(SICI)1521-3773(19981217)37:23<3270::AID-ANIE3270>3.0.CO;2-2
  7. Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Phillips, D.; Raithby, P. R.; Schofield, E.; Sparr, E.; Tocher, D. A.; Zehnder, M.; Zimmermann, Y. J. Chem. Soc., Dalton Trans. 2000, 2219.
  8. Cave, G. W. V.; Hardie, M. J.; Roberts, B. A.; Raston, C. L. Eur. J. Org. Chem. 2001, 3227.
  9. Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Schneider, A.G.; Springler, B.; Zehnder, M. Inorg. Chim. Acta 2000, 49, 300.
  10. Li, Y.; Liu, Y.; Bu, W.; Guo, J.; Wang, Y. Chem. Commun. 2000,1551.
  11. Rice, C. R.; Ward, M. D.; Nazeeruddin, M. K.; Grazel, M. New J. Chem. 2000, 24, 651. https://doi.org/10.1039/b003823g
  12. Cave, G. W. V.; Fanizzi, F. P.; Deeth, R. J.; Errington, W.; Rourke, J. P. Organometallics 2000, 19, 1801.
  13. Konda, S. G.; Khedkar, V. T.; Dawane, B. S. J. Chem. Pharm. Res.2010, 2, 187.
  14. Temple, C. J.; Rener, G. A.; Waud, W. R.; Noker, P. E. J. Med. Chem. 1992, 35, 3686. https://doi.org/10.1021/jm00098a014
  15. Budgett, C. O.; Woodward, C. F. J. Am. Chem. Soc. 1947, 69, 2907.
  16. Mercier, J.; Gavend, M.; Vanluv, V.; Dessaigne, S. Congr Unionther Int [CR] 1963, 8, 361.
  17. Dorner, G.; Fischer, F. W. Arezenmittel Forch 1961, 11, 110.
  18. Boger, D. L.; Nakahara, S. J. Org. Chem. 1991, 56, 880. https://doi.org/10.1021/jo00002a077
  19. Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517. https://doi.org/10.1021/ja00186a067
  20. Zhang, T. Y.; Stout, J. R.; Keay, J. G.; Seriven, E. F. V.; Toomey,J. E.; Goe, G. L. Tetrahedron 1995, 51, 13177. https://doi.org/10.1016/0040-4020(95)00788-A
  21. Youngdale, G. A. US Pat. 4 288 440, 1980
  22. Youngdale, G. A. Chem. Abstr. 1982, 96, 6596.
  23. Todd, A. H.; UK Pat. 1 203, 149, 1970.
  24. Todd, A. H.; Chem. Abstr. 73, 120509, 1970.
  25. Lohaus, G.; Dittmar, W.; Afric, S. Pat. 6 906, 036, 1968
  26. Lohaus, G.; Dittmar, W.; Afric, S.; Chem. Abstr. 73, 120508, 1970.
  27. Gachet, C.; Cattanea, M.; Ohlmann, P.; Lecchi, B.; Cassel, J.;Mannucci, P.; Cazenave, J. P. Br. J. Haematol. 1995, 91, 434. https://doi.org/10.1111/j.1365-2141.1995.tb05319.x
  28. Wang, H.; Helgeson, R.; Ma, B.; Wudl, F. J. Org. Chem. 2000,65, 5862. https://doi.org/10.1021/jo0005666
  29. Kanbara, T.; Kushida, T.; Saito, N.; Kuwajima, I.; Kubota, K.;Yamamoto, T. Chem. Lett. 1992, 583.
  30. Meyer, T. J. Acc. Chem. Res. 1989, 22, 163. https://doi.org/10.1021/ar00161a001
  31. Harada, H.; Watanuki, S.; Takuwa, T.; Kawaguchi, K.; Okazaki,T.; Harano, Y.; Saitoh, C. PCT Int. Appl. WO 2002, 006, 237 A1,2002, 92.
  32. Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono,H.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai,K.; Inbe, H.; Takeshita, K.; Niki, T.; Umeda, M.; Bacon, K. B.;Ziegelbauer, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Lett.2003, 13, 913. https://doi.org/10.1016/S0960-894X(02)01046-6
  33. Shishoo, C. J.; Devani, M. B.; Bhadti, V. S.; Ananthan, S.; Ullas, G. V. Tetrahedron Lett. 1983, 24, 4611. https://doi.org/10.1016/S0040-4039(00)85969-9
  34. Doe, K.; Avasthi, K.; Pratap, R.; Bakuni, D. S.; Joshi, M. N. Indian J. Chem. 1990, 29B, 459.
  35. Bhalerao, U. T.; Krishnaiah, A. Ind. J. Chem. 1995, 34B, 587.
  36. Al-Haiza, M. A.; Mostafa1, M. S.; El-Kady, M. Y. Molecules 2003,8, 275. https://doi.org/10.3390/80200275
  37. Janis, R. A.; Silver, P. J.; Triggle, D. J. Adv. Drug Res. 1987, 16,309.
  38. Tyndall, D. V.; Nakib, T. A.; Meegan, M. J. Tetrahedron Lett.1988, 29, 2703. https://doi.org/10.1016/0040-4039(88)85265-1
  39. Al-Arab, M. M. J. Heterocycl. Chem. 1989, 26, 1665. https://doi.org/10.1002/jhet.5570260629
  40. Cave, G. W. V.; Raston, C. L. J. Chem. Soc., Perkin Trans. 1 2001,3258.
  41. Luche, J. L. Synthetic Organic Sonochemistry; Plenum Press: New York, 1998.
  42. Li, J. T.; Yang, W. Z.; Wang, S. X.; Li, S. H.; Li, T. S. Ultrason.Sonochem. 2002, 9, 237. https://doi.org/10.1016/S1350-4177(02)00079-2
  43. Pathak, V. N.; Gupta, R.; Varshney, B. Indian J. Chem. B 2008,47, 434.
  44. Cheng, M. S.; Li, R. S.; Kenyon, G. Chinese Chemical Letters 2000, 11, 851.

Cited by

  1. Substituted-nicotinyl thiourea derivatives bearing pyrimidine moiety: synthesis and biological evaluation vol.37, pp.6, 2011, https://doi.org/10.1007/s11164-010-0235-1
  2. ChemInform Abstract: “One-Pot” Synthesis of 2-Amino-3-cyano-4,6-diarylpyridines under Ultrasonic Irradiation and Grindstone Technology. vol.42, pp.13, 2011, https://doi.org/10.1002/chin.201113140
  3. An environmentally benign and solvent-free synthesis of 3-aryl[1,2,4]triazolo[4,3-a]pyridines and 1-aryl-5-methyl[1,2,4]triazolo[4,3-a]quinolines using phenyliodine bis(trifluoroacetate) or iodobenzene diacetate vol.47, pp.10, 2012, https://doi.org/10.1007/s10593-012-0899-0
  4. Aqueous media preparation of 2-amino-4,6-diphenylnicotinonitriles using cellulose sulfuric acid as an efficient catalyst vol.40, pp.2, 2014, https://doi.org/10.1007/s11164-012-1008-9
  5. Using magnetic nanoparticles Fe3O4 as a reusable catalyst for the synthesis of pyran and pyridine derivatives via one-pot multicomponent reaction vol.12, pp.11, 2015, https://doi.org/10.1007/s13738-015-0684-y
  6. -Heterocycles: Microwave-Assisted Synthesis vol.45, pp.1, 2015, https://doi.org/10.1080/00397911.2013.813548
  7. ]Pyrimidines vol.53, pp.5, 2016, https://doi.org/10.1002/jhet.2460
  8. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles vol.20, pp.1, 2016, https://doi.org/10.1007/s11030-015-9596-0
  9. H as a novel nanomagnetic catalyst: Application to the preparation of 2-amino-4,6-diphenylnicotinonitriles via anomeric-based oxidation vol.31, pp.5, 2016, https://doi.org/10.1002/aoc.3598
  10. ClO 4 − /Al-MCM-41 nanoparticles as a solid acid catalyst for the synthesis of 2-amino-3-cyanopyridines vol.42, pp.4, 2016, https://doi.org/10.1007/s11164-015-2183-2
  11. catalyst for 2-amino-3-cyanopyridine preparation via an anomeric based oxidation vol.6, pp.55, 2016, https://doi.org/10.1039/C6RA12299J
  12. Instantaneous and Selective Bare Eye Detection of Inorganic Fluoride Ion by Coumarin-Pyrazole-Based Receptors vol.54, pp.5, 2017, https://doi.org/10.1002/jhet.2884
  13. The green synthesis of 2-amino-3-cyanopyridines using SrFe12O19 magnetic nanoparticles as efficient catalyst and their application in complexation with Hg2+ ions pp.1735-2428, 2018, https://doi.org/10.1007/s13738-018-1514-9
  14. Chemistry of 2-Amino-3-cyanopyridines vol.44, pp.3, 2010, https://doi.org/10.1080/00397911.2013.823549
  15. Sulfonic Acid Supported Phosphonium Based Ionic Liquid Functionalized SBA-15 for the Synthesis of 2-Amino-3-cyano-4,6-diarylpyridines vol.46, pp.2, 2010, https://doi.org/10.1080/15533174.2014.988234
  16. Highly efficient four-component synthesis of 2-amino-3-cyanopyridines using doped nano-sized copper(I) oxide (Cu2O) on melamine-formaldehyde resin vol.40, pp.9, 2010, https://doi.org/10.3184/174751916x14709292404728
  17. Copper Zirconium Phosphate as an Efficient Catalyst for Multi-component Reactions in Solvent-Free Conditions vol.42, pp.1, 2010, https://doi.org/10.1007/s40995-018-0495-y
  18. Novel magnetic nanoparticles with morpholine tags as multirole catalyst for synthesis of hexahydroquinolines and 2-amino-4,6-diphenylnicotinonitriles through vinylogous anomeric-based oxidation vol.45, pp.6, 2019, https://doi.org/10.1007/s11164-019-03802-7
  19. One-pot synthesis of 2-amino-3-cyanopyridines and hexahydroquinolines using eggshell-based nano-magnetic solid acid catalyst via anomeric-based oxidation vol.46, pp.2, 2010, https://doi.org/10.1007/s11164-019-04049-y
  20. One-Pot Expeditious Synthesis of 2-Amino-4,6-(disubstituted)nicotinonitriles Using Activated Fuller’s Earth as Catalyst vol.53, pp.2, 2010, https://doi.org/10.1080/00304948.2020.1858693