References
- Krohnke, K. Synthesis 1976, 1.
- Katritzky, A. R.; Elisseou, E. M.; Patel, R. C.; Plau, B. J. Chem. Soc., Perkin Trans. 1 1982, 125.
- Steenwinkel, P.; James, S. L.; Grove, D. M.; Kooijman, H.; Spek,A. L.; Koten, G. V. Organometallics 1997, 16, 513. https://doi.org/10.1021/om960943y
- Neve, F.; Campagna, S.; Crispini, A. Inorg. Chem. 1997, 36, 6150. https://doi.org/10.1021/ic9703540
- Cave, G. W. V.; Hallett, J.; Errington, W.; Rourke, J. P. Angew. Chem. 1998, 23, 3466
- Cave, G. W. V.; Hallett, J.; Errington, W.; Rourke, J. P. Angew. Chem., Int. Ed. 1998, 37, 3270. https://doi.org/10.1002/(SICI)1521-3773(19981217)37:23<3270::AID-ANIE3270>3.0.CO;2-2
- Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Phillips, D.; Raithby, P. R.; Schofield, E.; Sparr, E.; Tocher, D. A.; Zehnder, M.; Zimmermann, Y. J. Chem. Soc., Dalton Trans. 2000, 2219.
- Cave, G. W. V.; Hardie, M. J.; Roberts, B. A.; Raston, C. L. Eur. J. Org. Chem. 2001, 3227.
- Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Schneider, A.G.; Springler, B.; Zehnder, M. Inorg. Chim. Acta 2000, 49, 300.
- Li, Y.; Liu, Y.; Bu, W.; Guo, J.; Wang, Y. Chem. Commun. 2000,1551.
- Rice, C. R.; Ward, M. D.; Nazeeruddin, M. K.; Grazel, M. New J. Chem. 2000, 24, 651. https://doi.org/10.1039/b003823g
- Cave, G. W. V.; Fanizzi, F. P.; Deeth, R. J.; Errington, W.; Rourke, J. P. Organometallics 2000, 19, 1801.
- Konda, S. G.; Khedkar, V. T.; Dawane, B. S. J. Chem. Pharm. Res.2010, 2, 187.
- Temple, C. J.; Rener, G. A.; Waud, W. R.; Noker, P. E. J. Med. Chem. 1992, 35, 3686. https://doi.org/10.1021/jm00098a014
- Budgett, C. O.; Woodward, C. F. J. Am. Chem. Soc. 1947, 69, 2907.
- Mercier, J.; Gavend, M.; Vanluv, V.; Dessaigne, S. Congr Unionther Int [CR] 1963, 8, 361.
- Dorner, G.; Fischer, F. W. Arezenmittel Forch 1961, 11, 110.
- Boger, D. L.; Nakahara, S. J. Org. Chem. 1991, 56, 880. https://doi.org/10.1021/jo00002a077
- Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517. https://doi.org/10.1021/ja00186a067
- Zhang, T. Y.; Stout, J. R.; Keay, J. G.; Seriven, E. F. V.; Toomey,J. E.; Goe, G. L. Tetrahedron 1995, 51, 13177. https://doi.org/10.1016/0040-4020(95)00788-A
- Youngdale, G. A. US Pat. 4 288 440, 1980
- Youngdale, G. A. Chem. Abstr. 1982, 96, 6596.
- Todd, A. H.; UK Pat. 1 203, 149, 1970.
- Todd, A. H.; Chem. Abstr. 73, 120509, 1970.
- Lohaus, G.; Dittmar, W.; Afric, S. Pat. 6 906, 036, 1968
- Lohaus, G.; Dittmar, W.; Afric, S.; Chem. Abstr. 73, 120508, 1970.
- Gachet, C.; Cattanea, M.; Ohlmann, P.; Lecchi, B.; Cassel, J.;Mannucci, P.; Cazenave, J. P. Br. J. Haematol. 1995, 91, 434. https://doi.org/10.1111/j.1365-2141.1995.tb05319.x
- Wang, H.; Helgeson, R.; Ma, B.; Wudl, F. J. Org. Chem. 2000,65, 5862. https://doi.org/10.1021/jo0005666
- Kanbara, T.; Kushida, T.; Saito, N.; Kuwajima, I.; Kubota, K.;Yamamoto, T. Chem. Lett. 1992, 583.
- Meyer, T. J. Acc. Chem. Res. 1989, 22, 163. https://doi.org/10.1021/ar00161a001
- Harada, H.; Watanuki, S.; Takuwa, T.; Kawaguchi, K.; Okazaki,T.; Harano, Y.; Saitoh, C. PCT Int. Appl. WO 2002, 006, 237 A1,2002, 92.
- Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono,H.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai,K.; Inbe, H.; Takeshita, K.; Niki, T.; Umeda, M.; Bacon, K. B.;Ziegelbauer, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Lett.2003, 13, 913. https://doi.org/10.1016/S0960-894X(02)01046-6
- Shishoo, C. J.; Devani, M. B.; Bhadti, V. S.; Ananthan, S.; Ullas, G. V. Tetrahedron Lett. 1983, 24, 4611. https://doi.org/10.1016/S0040-4039(00)85969-9
- Doe, K.; Avasthi, K.; Pratap, R.; Bakuni, D. S.; Joshi, M. N. Indian J. Chem. 1990, 29B, 459.
- Bhalerao, U. T.; Krishnaiah, A. Ind. J. Chem. 1995, 34B, 587.
- Al-Haiza, M. A.; Mostafa1, M. S.; El-Kady, M. Y. Molecules 2003,8, 275. https://doi.org/10.3390/80200275
- Janis, R. A.; Silver, P. J.; Triggle, D. J. Adv. Drug Res. 1987, 16,309.
- Tyndall, D. V.; Nakib, T. A.; Meegan, M. J. Tetrahedron Lett.1988, 29, 2703. https://doi.org/10.1016/0040-4039(88)85265-1
- Al-Arab, M. M. J. Heterocycl. Chem. 1989, 26, 1665. https://doi.org/10.1002/jhet.5570260629
- Cave, G. W. V.; Raston, C. L. J. Chem. Soc., Perkin Trans. 1 2001,3258.
- Luche, J. L. Synthetic Organic Sonochemistry; Plenum Press: New York, 1998.
- Li, J. T.; Yang, W. Z.; Wang, S. X.; Li, S. H.; Li, T. S. Ultrason.Sonochem. 2002, 9, 237. https://doi.org/10.1016/S1350-4177(02)00079-2
- Pathak, V. N.; Gupta, R.; Varshney, B. Indian J. Chem. B 2008,47, 434.
- Cheng, M. S.; Li, R. S.; Kenyon, G. Chinese Chemical Letters 2000, 11, 851.
Cited by
- Substituted-nicotinyl thiourea derivatives bearing pyrimidine moiety: synthesis and biological evaluation vol.37, pp.6, 2011, https://doi.org/10.1007/s11164-010-0235-1
- ChemInform Abstract: “One-Pot” Synthesis of 2-Amino-3-cyano-4,6-diarylpyridines under Ultrasonic Irradiation and Grindstone Technology. vol.42, pp.13, 2011, https://doi.org/10.1002/chin.201113140
- An environmentally benign and solvent-free synthesis of 3-aryl[1,2,4]triazolo[4,3-a]pyridines and 1-aryl-5-methyl[1,2,4]triazolo[4,3-a]quinolines using phenyliodine bis(trifluoroacetate) or iodobenzene diacetate vol.47, pp.10, 2012, https://doi.org/10.1007/s10593-012-0899-0
- Aqueous media preparation of 2-amino-4,6-diphenylnicotinonitriles using cellulose sulfuric acid as an efficient catalyst vol.40, pp.2, 2014, https://doi.org/10.1007/s11164-012-1008-9
- Using magnetic nanoparticles Fe3O4 as a reusable catalyst for the synthesis of pyran and pyridine derivatives via one-pot multicomponent reaction vol.12, pp.11, 2015, https://doi.org/10.1007/s13738-015-0684-y
- -Heterocycles: Microwave-Assisted Synthesis vol.45, pp.1, 2015, https://doi.org/10.1080/00397911.2013.813548
- ]Pyrimidines vol.53, pp.5, 2016, https://doi.org/10.1002/jhet.2460
- Transition metal-free one-pot synthesis of nitrogen-containing heterocycles vol.20, pp.1, 2016, https://doi.org/10.1007/s11030-015-9596-0
- H as a novel nanomagnetic catalyst: Application to the preparation of 2-amino-4,6-diphenylnicotinonitriles via anomeric-based oxidation vol.31, pp.5, 2016, https://doi.org/10.1002/aoc.3598
- ClO 4 − /Al-MCM-41 nanoparticles as a solid acid catalyst for the synthesis of 2-amino-3-cyanopyridines vol.42, pp.4, 2016, https://doi.org/10.1007/s11164-015-2183-2
- catalyst for 2-amino-3-cyanopyridine preparation via an anomeric based oxidation vol.6, pp.55, 2016, https://doi.org/10.1039/C6RA12299J
- Instantaneous and Selective Bare Eye Detection of Inorganic Fluoride Ion by Coumarin-Pyrazole-Based Receptors vol.54, pp.5, 2017, https://doi.org/10.1002/jhet.2884
- The green synthesis of 2-amino-3-cyanopyridines using SrFe12O19 magnetic nanoparticles as efficient catalyst and their application in complexation with Hg2+ ions pp.1735-2428, 2018, https://doi.org/10.1007/s13738-018-1514-9
- Chemistry of 2-Amino-3-cyanopyridines vol.44, pp.3, 2010, https://doi.org/10.1080/00397911.2013.823549
- Sulfonic Acid Supported Phosphonium Based Ionic Liquid Functionalized SBA-15 for the Synthesis of 2-Amino-3-cyano-4,6-diarylpyridines vol.46, pp.2, 2010, https://doi.org/10.1080/15533174.2014.988234
- Highly efficient four-component synthesis of 2-amino-3-cyanopyridines using doped nano-sized copper(I) oxide (Cu2O) on melamine-formaldehyde resin vol.40, pp.9, 2010, https://doi.org/10.3184/174751916x14709292404728
- Copper Zirconium Phosphate as an Efficient Catalyst for Multi-component Reactions in Solvent-Free Conditions vol.42, pp.1, 2010, https://doi.org/10.1007/s40995-018-0495-y
- Novel magnetic nanoparticles with morpholine tags as multirole catalyst for synthesis of hexahydroquinolines and 2-amino-4,6-diphenylnicotinonitriles through vinylogous anomeric-based oxidation vol.45, pp.6, 2019, https://doi.org/10.1007/s11164-019-03802-7
- One-pot synthesis of 2-amino-3-cyanopyridines and hexahydroquinolines using eggshell-based nano-magnetic solid acid catalyst via anomeric-based oxidation vol.46, pp.2, 2010, https://doi.org/10.1007/s11164-019-04049-y
- One-Pot Expeditious Synthesis of 2-Amino-4,6-(disubstituted)nicotinonitriles Using Activated Fuller’s Earth as Catalyst vol.53, pp.2, 2010, https://doi.org/10.1080/00304948.2020.1858693