DOI QR코드

DOI QR Code

Polyol Synthesis of Ruthenium Selenide Catalysts for Oxygen Reduction Reaction

  • Lee, Ki-Rak (Department of Chemical and Biomolecular Engineering (BK21 Graduate Program), Korea Advanced Institute of Science and Technology) ;
  • Woo, Seong-Ihl (Department of Chemical and Biomolecular Engineering (BK21 Graduate Program), Korea Advanced Institute of Science and Technology)
  • Received : 2010.07.14
  • Accepted : 2010.09.30
  • Published : 2010.11.20

Abstract

Ruthenium catalysts modified by selenium have been introduced as alternative materials to Pt in Direct methanol fuel cells (DMFCs). RuSe nano-particles were synthesized on the Vulcan XC72R carbon supports via polyol method. The prepared catalysts were electrochemically and physically characterized by cyclic voltammetry (CV,) linear sweep voltammetry, methanol tolerance test, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energydispersive Spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Increasing the Se concentration up to 20 at % increased the electro-catalytic activity for the oxygen reduction. By increasing Se amount, Ru metallic form on the surface was increased. The $Ru_{80}Se_{20}$/C catalysts showed the highest oxygen reduction reaction (ORR) activity and outstanding methanol tolerant property in half cell tests as well as single cell test.

Keywords

References

  1. Jeon, M. K.; Lee, K. R.; Oh, K. S.; Hong, D. S.; Won, J. Y.; Li, S.; Woo, S. I. J. Power Sources 2006, 158, 1344. https://doi.org/10.1016/j.jpowsour.2005.10.056
  2. Choi, W. C.; Kim, J. D.; Woo, S. I. Catal. Today 2002, 74, 235. https://doi.org/10.1016/S0920-5861(02)00026-3
  3. Jeon, M. K.; Won, J. Y.; Woo, S. I. Electrochem. Solid-State Lett. 2007, 10, B25.
  4. Choi, W. C.; Kim, J. D.; Woo, S. I. J. Power Sources 2001, 96, 411. https://doi.org/10.1016/S0378-7753(00)00602-9
  5. Antolini, E. Appl. Catal. B: Environ. 2007, 74, 337. https://doi.org/10.1016/j.apcatb.2007.03.001
  6. Lee, K. R.; Jeon, M. K.; Woo, S. I. Appl. Catal. B-Environ. 2009, 91, 428. https://doi.org/10.1016/j.apcatb.2009.06.011
  7. Jeon, M. K.; Lee, K. R.; Jeon, H. J.; Woo, S. I. J. Appl. Electrochem. 2009, 39, 1503. https://doi.org/10.1007/s10800-009-9833-2
  8. Travitsky, N.; Ripenbein, T.; Golodnitsky, D.; Rosenberg, Y.; Burshtein, L.; Pele, E. J. Power Sources 2006, 161, 782. https://doi.org/10.1016/j.jpowsour.2006.05.035
  9. Whitacre, J. F.; Valdez, T. I.; Narayanan, S. R. Electorchim. Acta 2008, 53, 3680. https://doi.org/10.1016/j.electacta.2007.12.017
  10. Jeon, M. K.; Zhang, Y.; McGinn, P. J. Electrochim. Acta 2010, 55, 5318. https://doi.org/10.1016/j.electacta.2010.04.056
  11. Schulenburg, H.; Mller, E.; Khelashvili, G.; Roser, T.; Bnnemann, H.; Wokaun, A.; Scherer, G. G. J. Phys. Chem. C 2009, 113, 4069. https://doi.org/10.1021/jp808134j
  12. Antolini, E.; Salgado, J. R. C.; Santos, L. G. R. A.; Garcia, G.; Ticianelli, E. A.; Pastor, E.; Gonzalez, E. R. J. Appl. Electrochem. 2006, 36, 355. https://doi.org/10.1007/s10800-005-9072-0
  13. Jeon, M. K.; Liu, J. H.; Lee, K. R.; Lee, J. W.; McGinn, P. J.; Woo, S. I. Fuel Cells 2010, 10, 93.
  14. Liu, J. H.; Jeon, M. K.; Woo, S. I. Appl. Surf. Sci. 2006, 252, 2580. https://doi.org/10.1016/j.apsusc.2005.07.076
  15. Choi, W. C.; Woo, S. I.; Jeon, M. K.; Sohn, J. M.; Kim, M. R.; Jeon, H. J. Adv. Mater. 2005, 17, 446. https://doi.org/10.1002/adma.200400978
  16. Jeon, M. K.; Lee, K. R.; Lee, W. S.; Daimon, H.; Nakahara, A.; Woo, S. I. J. Power Sources 2008, 185, 927. https://doi.org/10.1016/j.jpowsour.2008.07.067
  17. Gupta, G.; Slanac, D. A.; Kumar, P.; Camacho, J. D. W.; Kim, J.; Ryoo, R.; Stevenson, K. J.; Johnston, K. P. J. Phys. Chem. C 2010, 114, 10796. https://doi.org/10.1021/jp907015j
  18. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Appl. Catal. B 2005, 56, 9. https://doi.org/10.1016/j.apcatb.2004.06.021
  19. Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Angew. Chem. Int. Ed. 2007, 46, 8988. https://doi.org/10.1002/anie.200703331
  20. Antolini, E.; Lopes, T.; Gonzalez, E. R. J. Alloys. Comp. 2008, 461, 253. https://doi.org/10.1016/j.jallcom.2007.06.077
  21. DeLuca, N. W.; Elabd, Y. A. J. Polym. Sci. Polym. Phys. 2006, 44, 2201. https://doi.org/10.1002/polb.20861
  22. Suo, Y.; Zhuang, L.; Lu, J. Angew. Chem. Int. Ed. 2007, 46, 2862. https://doi.org/10.1002/anie.200604332
  23. Shao, M. H.; Sasaki, K.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 3526. https://doi.org/10.1021/ja060167d
  24. Sarker, A.; Murugan, A. V.; Manthiram, A. J. Phys. Chem. C 2008, 112, 12037. https://doi.org/10.1021/jp801824g
  25. Widelov, A.; Larsson, R. Electrochim. Acta 1992, 37, 187. https://doi.org/10.1016/0013-4686(92)85002-3
  26. Bashyam, R.; Zelenay, P. Nature 2006, 443, 63. https://doi.org/10.1038/nature05118
  27. Babu, P. K.; Lewera, A.; Chung, J. H.; Hunger, R.; Jaegermann, W.; Vante, N. A.; Wiechowski, A.; Oldfield, E. J. Am. Chem. Soc. 2007, 129, 15140. https://doi.org/10.1021/ja077498q
  28. Lee, J. W.; Popov, B. N. J. Solid State Electrochem. 2007, 11, 1355. https://doi.org/10.1007/s10008-007-0307-3
  29. Lee, K. R.; Lee, K. U.; Lee, J. W.; Ahn, B. T.; Woo, S. I. Electrochem. Commun. 2010, in press.
  30. Liu, G. C.; Dahn, J. R. Appl. Catal. A: General 2008, 347, 43. https://doi.org/10.1016/j.apcata.2008.05.035
  31. Matter, P. H.; Zhang, L.; Ozkan, U. S. J. Catal. 2006, 239, 83. https://doi.org/10.1016/j.jcat.2006.01.022
  32. Vante, N. A.; Jaegermann, W.; Tributsch, H.; Honle, W.; Yvon, K. J. Am. Chem. Soc. 1897, 109, 3251. https://doi.org/10.1021/ja00245a013
  33. Vante, N. A.; Tributsch, H.; Feria, O. S. Electrochim. Acta 1995, 40, 567. https://doi.org/10.1016/0013-4686(94)00377-D
  34. Fievet, F.; Lagier, J. P.; Blin, L. B.; Beaudoin, B.; Figlarz, M. Solid State Ionics 1989, 32/33, 198. https://doi.org/10.1016/0167-2738(89)90222-1
  35. Yan, S.; Sun, G.; Tian, J.; Jiang, L.; Qi, J.; Xin, Q. Eletrochim. Acta 2006, 52, 1692. https://doi.org/10.1016/j.electacta.2006.03.101
  36. Schmidt, T. J.; Gasteiger, H. A.; Stäb, G. D.; Urban, P. M.; Kolb, D. M.; Behm, R. J. J. Electrochem. Soc. 1998, 145, 2354. https://doi.org/10.1149/1.1838642
  37. Li, W.; Zhou, W.; Li, H.; Zhou, Z.; Zhou, B.; Sun, G.; Xin, Q. Electrochim Acta 2004, 49, 1045. https://doi.org/10.1016/j.electacta.2003.10.015
  38. Serov, A. A.; Min, M.; Chai, G.; Han, S.; Kang, S.; Kwak, C. J. Power Sources 2008, 175, 175. https://doi.org/10.1016/j.jpowsour.2007.08.089
  39. He, C. Z.; Kunz, H. R.; Fenton, J. M. J. Electrochem. Soc. 1997, 144, 970. https://doi.org/10.1149/1.1837515
  40. Cao, D.; Wiechowski, A.; Inukai, J.; Vante, N. A. J. Electrochemical Soc. 2006, 153(5), A869. https://doi.org/10.1149/1.2180709
  41. Nagabhushana, K. S.; Dinjus, E.; Bőnnemann, H.; Zaikovskii, V.; Hartnig, C.; Zehl, G.; Dorbandt, I.; Fiechter, S.; Bogdanoff, P. J. Appl. Electrochem. 2007, 37, 1515. https://doi.org/10.1007/s10800-007-9423-0
  42. Jordanov, S. H.; Kozlowaka, H. A.; Vukovic, M.; Conway, B. E. J. Phys. Chem. 1977, 81, 2271. https://doi.org/10.1021/j100539a016
  43. Colmenares, L.; Jusys, Z.; Behm, R. J. J. Phys. Chem. C 2007, 111, 1273. https://doi.org/10.1021/jp0645925
  44. Michell, D.; Rand, D. A. J.; Woods, R. J. Electroanal. Chem. Interfacial Electrochem. 1978, 89, 11. https://doi.org/10.1016/S0022-0728(78)80027-8
  45. Kinoshita, K.; Ross, P. N. J. Electroanal. Chem. Interfacial Electrochem. 1977, 78, 313. https://doi.org/10.1016/S0022-0728(77)80125-3
  46. Pinheiro, A. L. N.; Zei, M. S.; Ertl, G. Phys. Chem. Chem. Phys. 2005, 7, 1300. https://doi.org/10.1039/b411467a
  47. Dassenoy, F.; Vogel, W.; Vante, N. A. J. Phys. Chem. B 2002, 106, 12152. https://doi.org/10.1021/jp021443n
  48. Bron, M.; Bogdanoff, P.; Fiechter, S.; Dorbandt, I.; Hilgendorff, M.; Schulenburg, G.; Tributsch, H. J. Electroanal. Chem. 2001, 500, 510. https://doi.org/10.1016/S0022-0728(00)00416-2
  49. Colmenares, L.; Jusys, Z.; Behm, R. J. Langmuir 2006, 22, 10437. https://doi.org/10.1021/la061245d
  50. Babu, P. K.; Lewera, A.; Chung, J. H.; Hunger, R.; Jaegermann, W.; Vante, N. A.; Wiechowski, A.; Oldfield, E. J. Am. Chem. Soc. 2007, 129, 15140. https://doi.org/10.1021/ja077498q
  51. Wagner, C. D.; Naumkin, A. V.; Vass, A. K.; Allison, J. W.; Powell, C. J.; Rumble, J. R., Jr. NIST standard Reference Database 20, Version 3.4.
  52. Vericat, C.; Wakisaka, M.; Haasch, R.; Bagus, P. S.; Wiechowski, A. J. Solid State Electorhcem. 2004, 8, 794.
  53. Rochefort, D.; Dabo, P.; Guay, D.; Sherwood, P. M. A. Electrochim. Acta 2003, 48, 4245. https://doi.org/10.1016/S0013-4686(03)00611-X
  54. Lewera, A.; Inukai, J.; Zhou, W. P.; Cao, K.; Duong, H. T.; Vante, N. A.; Wiechowski, A. Electrochimica Acta 2007, 52, 5759. https://doi.org/10.1016/j.electacta.2007.01.061
  55. Zhu, Y. J.; Hu, X. L. Mater. Lett. 2004, 58, 1234. https://doi.org/10.1016/j.matlet.2003.09.044

Cited by

  1. Investigation of Hydrothermally Synthesized Ruthenium Selenides as Methanol-Tolerant Oxygen Reduction Catalysts vol.4, pp.4, 2013, https://doi.org/10.1007/s12678-013-0141-6
  2. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction vol.116, pp.6, 2016, https://doi.org/10.1021/acs.chemrev.5b00462
  3. Experimental Analysis of a Small-Scale Flowing Electrolyte–Direct Methanol Fuel Cell Stack vol.12, pp.4, 2015, https://doi.org/10.1115/1.4031423