DOI QR코드

DOI QR Code

Electrochemical and Spectroelectrochemical Behaviors of Vitamin K1/Lipid Modified Electrodes and the Formation of Radical Anion in Aqueous Media

  • Received : 2010.07.28
  • Accepted : 2010.09.17
  • Published : 2010.11.20

Abstract

The electrochemical properties of the liposoluble vitamin $K_1$ adsorbed on bare and lipid coated glassy carbon electrodes (GCEs) were studied in unbuffered and well buffered aqueous media. The reduction products of vitamin $K_1$ were characterized by employing cyclic voltammetry and the in situ UV-visible spectroelectrochemical technique. The radical species of vitamin $K_1$ cannot be observed at the bare GCEs in well buffered media. The formation of the anion radical of vitamin $K_1$ was observed in unbuffered solutions above pH 5.9 or at the lipid coated GCE in a well-buffered solution. UV-visible absorption bands of neutral vitamin $K_1$ were observed at 260 nm and 330 nm, and a band corresponding to the anion radical species was observed at 450 nm. The derivative cyclic voltabsorptometric (DCVA) curves obtained for electrochemical reduction of vitamin $K_1$ confirmed the presence of both neutral and anion radical species. The anion radical of vitamin $K_1$ formed at the hydrophobic conditions with phosphatidylcholine (PC) lipid coated electrode was stable enough to be observed in the spectroelectrochemical experiments.

Keywords

References

  1. Bentleyand, R.; Campbell, P. M.; Patai, S. The Chemistry of Quinone Compounds; John Wiley & Sons: London, 1974; Part 2, pp 683-735.
  2. Park, H.; Park, J.; Shim, Y.-B. J. Electroanal Chem. 2001, 514,67-74. https://doi.org/10.1016/S0022-0728(01)00627-1
  3. Yoon, J.-H.; Lee, K.-S.; Yang, J. E.; Won, M.-S.; Shim, Y.-B. J. Electroanal Chem. 2010, 644, 36-43. https://doi.org/10.1016/j.jelechem.2010.03.029
  4. Lee, K.-S.; Noh, H.-B.; Won, M.-S.; Shim, Y. -B. Biomaterials 2010, 31, 7827-7835. https://doi.org/10.1016/j.biomaterials.2010.06.052
  5. Nagata, M.; Kondo, M.; Suemori, Y.; Ochiai, T.; Dewa, T.; Ohtsuka,T.; Nango, M. Colloids and Surface B: Biointerfaces 2008, 64,16-21. https://doi.org/10.1016/j.colsurfb.2007.12.017
  6. Quan, M.; Sanchez, D.; Wasylkiw, M. F.; Smith, D. K. J. Am. Chem. Soc. 2007, 129, 12847-12856. https://doi.org/10.1021/ja0743083
  7. Garrett, R. H.; Grisham, C. M. Biochemistry, 3rd ed.; Thomson Brooks/Cole: Belmont, CA, 2005; pp 681-685.
  8. Shim, Y.-B.; Park, S.-M. J. Electroanal. Chem. 1997, 425, 201-207 https://doi.org/10.1016/S0022-0728(96)04956-X
  9. Park, H.; Park, J.; Shim, Y.-B. J. Electroanal. Chem. 1997, 438,113-119. https://doi.org/10.1016/S0022-0728(96)04984-4
  10. Park, H.; Won, M.-S.; Shim, Y.-B. Electroanalysis 2002, 14, No.21,1501-1507. https://doi.org/10.1002/1521-4109(200211)14:21<1501::AID-ELAN1501>3.0.CO;2-B
  11. Voet, D. Biochemistry; John Wiley & Sons: New York, 1990; p1223.
  12. Josic, D.; Hoffer, L.; Buchacher, A. J. Chromatography B 2003,790, 183-197. https://doi.org/10.1016/S1570-0232(03)00082-5
  13. Weber, P. Nutrition 2001, 17, 880-887. https://doi.org/10.1016/S0899-9007(01)00709-2
  14. Somer, G.; Dogan, M. Bioelectrochemistry 2008, 74, 96-100. https://doi.org/10.1016/j.bioelechem.2008.05.001
  15. Nasiri, H. R.; Panisch, R.; Madej, M. G.; Bats, J. W.; Lancaster,C. R. D.; Schwalbe, H. Biochimica et Biophysica Acta 2009, 1787,601-608. https://doi.org/10.1016/j.bbabio.2009.02.013
  16. Chin, T.; Yeh, S. Y.; Wang, C. M. J. Electroanal. Chem. 2003, 543,135-142. https://doi.org/10.1016/S0022-0728(02)01487-0
  17. Hui, Y.; Chng, E. L. K.; Chng, C. Y. L.; Poh, H. L.; Webster, R. D. J. Am. Chem. Soc. 2009, 131, 1523-1534. https://doi.org/10.1021/ja8080428
  18. A.-Varela, G.; S.-Fernandez, A. L.; C.-Garcia, A. Electrochimica Acta 1998, 44, 763-772. https://doi.org/10.1016/S0013-4686(98)00246-1
  19. Cannes, C.; Kanoufi, F.; Bard, A. J. Langmuir 2002, 18, 8134-8141. https://doi.org/10.1021/la0258906
  20. Kats, E. Y.; Solov'ev, A. A. J. Electroanal. Chem. 1990, 291, 171. https://doi.org/10.1016/0022-0728(90)87185-M
  21. Takehara, K.; Takemura, H.; Ide, Y.; Okayama, S. J. Electroanal. Chem. 1991, 308, 345. https://doi.org/10.1016/0022-0728(91)85081-Y
  22. Liu, Z.; Li, J.; You, T.; Yang, X.; Wang, E. Electroanalysis 1999,11, No.1, 53. https://doi.org/10.1002/(SICI)1521-4109(199901)11:1<53::AID-ELAN53>3.0.CO;2-O
  23. Son, J. I.; Hwang, J.; Jin, S.-H.; Shim, Y.-B. J. Electroanal. Chem.2009, 628, 16-20. https://doi.org/10.1016/j.jelechem.2009.01.017
  24. Zhang, C.; Park, S.-M. Anal. Chem. 1988, 60, 1639. https://doi.org/10.1021/ac00166a037
  25. Balakrishnan, G.; Umapathy, S. Journal of Molecular Structure1999, 475, 5-11. https://doi.org/10.1016/S0022-2860(98)00497-9

Cited by

  1. Voltammetry of the liposoluble vitamins (A, D, E and K) in organic solvents vol.12, pp.1, 2012, https://doi.org/10.1002/tcr.201100005
  2. Produced in Aqueous–Organic Solutions Exists in Equilibrium with Its Hydrogen-Bonded Semiquinone Anion Radical vol.117, pp.8, 2013, https://doi.org/10.1021/jp4003966
  3. Voltammetry within structured liquid nanosystems: Towards the design of a flexible, three-dimensional framework for artificial photosystems vol.70, pp.None, 2010, https://doi.org/10.1016/j.electacta.2012.03.052
  4. Deconvoluting Surface-Bound Quinone Proton Coupled Electron Transfer in Unbuffered Solutions: Toward a Universal Voltammetric pH Electrode vol.141, pp.2, 2010, https://doi.org/10.1021/jacs.8b11518
  5. Simultaneous Determination of Vitamin E and Vitamin K in Food Supplements Using Adsorptive Stripping Square-Wave Voltammetry at Glassy Carbon Electrode vol.10, pp.14, 2010, https://doi.org/10.3390/app10144759