DOI QR코드

DOI QR Code

Suppression of Charge Recombination Rate in Nanocrystalline SnO2 by Thin Coatings of Divalent Oxides in Dye-Sensitized Solar Cells

  • Lee, Chae-Hyeon (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Lee, Gi-Won (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Kang, Wee-Kyung (Department of Chemistry, Soongsil University) ;
  • Lee, Doh-Kwon (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Ko, Min-Jae (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Kim, Kyoung-Kon (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Park, Nam-Gyu (School of Chemical Engineering, Sungkyunkwan University)
  • Received : 2010.04.26
  • Accepted : 2010.05.26
  • Published : 2010.11.20

Abstract

The core-shell $SnO_2$@AO (A=Ni, Cu, Zn and Mg) films were prepared and the effects of coatings on photovoltaic properties were investigated. Studies on X-ray photoelectron spectroscopy, energy dispersive X-ray analysis and transmission electron microscopy showed the formation of divalent oxides on the surface of $SnO_2$ nanoparticles. It was commonly observed that all the dye-sensitized core-shell films exhibited higher photovoltage than the bare $SnO_2$ film. Transient photovoltage measurements confirmed that the improved photovoltages were related to the decreased time constants for electron recombination.

Keywords

References

  1. Wang, Q.; Ito, S.; Gratzel, M.; Fabregat-Santiago, F.; Mora-Sero,I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110,25210. https://doi.org/10.1021/jp064256o
  2. Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Jpn. J. Appl. Phys., Pt. 2 2006, 45, L638. https://doi.org/10.1143/JJAP.45.L638
  3. Park, N.-G.; Kim, K. Phys. Stat. Sol. (a) 2008, 205, 1895. https://doi.org/10.1002/pssa.200778938
  4. Kay, A.; Grätzel, M. Chem. Mater. 2002, 14, 2930. https://doi.org/10.1021/cm0115968
  5. Park, N.-G.; Kang, M. G.; Kim, K. M.; Ryu, K. S.; Chang, S. H.;Kim, D.-K.; van de Lagemaat, J.; Benkstein, K. D.; Frank, A. J.Langmuir 2004, 20, 4246. https://doi.org/10.1021/la036122x
  6. Chappel, S.; Chen, S.-G.; Zaban, A. Langmuir 2002, 18, 3336. https://doi.org/10.1021/la015536s
  7. Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem.B 2003, 107, 1977. https://doi.org/10.1021/jp027827v
  8. Diamant, Y.; Chappel, S.; Chen, S.-G.; Melamed, O.; Zaban, A.Coord. Chem. Rev. 2004, 248, 1271. https://doi.org/10.1016/j.ccr.2004.03.003
  9. Bandaranayake, K. M .P.; Indika Senevirathna, M. K.; Prasad Weligamuwa,P. M. G. M.; Tennakone, K. Coord. Chem. Rev. 2004,248, 1277. https://doi.org/10.1016/j.ccr.2004.03.024
  10. Ito, S.; Nazeeruddin, K.; Liska, P.; Comte, P.; Charvet, R.; Pechy,P.; Jirousek, M.; Kay, A.; Zakeeruddin, S. M.; Grätzel, M. Prog. Photovolt: Res. Appl. 2006, 14, 589. https://doi.org/10.1002/pip.683
  11. Park, J.; Koo, H.-J.; Yoo, B.; Yoo, K.; Kim, K.; Choi, W.; Park, N.-G. Sol. Energy Mater. Sol. Cells 2007, 91, 1749. https://doi.org/10.1016/j.solmat.2007.06.002
  12. Kopidakis, N.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2003, 107, 11307. https://doi.org/10.1021/jp0304475
  13. Benkstein, K. D.; Kopidakis, N.; van de Lagemaat, J.; Frank, A. J.J. Phys. Chem. B 2003, 107, 7759. https://doi.org/10.1021/jp022681l
  14. McIntyre, N. S.; Cook, M. G. Anal. Chem. 1975, 47, 2208. https://doi.org/10.1021/ac60363a034
  15. Roberts, M. W.; Smart, R. St. C. Surf. Sci. 1980, 100, 590. https://doi.org/10.1016/0039-6028(80)90425-2
  16. Khyzhun, O.; Sygellou, L.; Ladas, S. J. Phys. Chem. B 2005, 109,2302. https://doi.org/10.1021/jp048875d
  17. Vasilkov, A. Y.; Nikolaev, S. A.; Smirnov, V. V.; Naumkin, A. V.;Volkov, I. O.; Podshibikhin, V. L. Mendeleev Commun. 2007, 17,268. https://doi.org/10.1016/j.mencom.2007.09.006
  18. Liu, X. F.; Yu, R. H. J. Appl. Phys. 2007, 102, 083917. https://doi.org/10.1063/1.2801375
  19. Chusuei, C. C.; Brookshier, M. A.; Goodman, D. W. Langmuir1999, 15, 2806. https://doi.org/10.1021/la9815446
  20. Ghijsen, J.; Tjeng, L. H.; Elp, J. V.; Eskes, H.; Westerink, J.; Sawatzky,G. A.; Czyzyk, M. T. Phys. Rev. B 1988, 38, 11322. https://doi.org/10.1103/PhysRevB.38.11322
  21. Bechara, R.; Aboukais, A.; Bonnelle, J.-P. J. Chem. Soc. FaradayTrans. 1993, 89, 1257. https://doi.org/10.1039/ft9938901257
  22. Yin, M.; Wu, C.-K.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.;O'Brien, S. J. J. Am. Chem. Soc. 2005, 127, 9506. https://doi.org/10.1021/ja050006u
  23. Puchert, M. K.; Timbrell, P. Y.; Lamb, R. N. J. Vac. Sci. Technol. A 1996, 14, 2220. https://doi.org/10.1116/1.580050
  24. Bar, M.; Reichardt, J.; Sieber, I.; Grimm, A.; Kotschau, I.; Lauermann,I.; Sokoll, S.; Lux-Steiner, M. C.; Fischer, C. H.; Niesen, T.P. J. Appl. Phys. 2006, 100, 23710. https://doi.org/10.1063/1.2218032
  25. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation: USA, Waltham, MA, 1992.
  26. Kang, S. H.; Kim, J.-Y.; Kim, Y.; Kim, H. S.; Sung, Y.-E. J. Phys. Chem. C 2007, 111, 9614. https://doi.org/10.1021/jp071504n
  27. Sun, L.; Wei, G.; Song, Y.; Liu, Z.; Wang, L.; Li, Z. Mater. Lett. 2006, 60, 1291. https://doi.org/10.1016/j.matlet.2005.11.017
  28. Corneille, J. S.; He, J.-W.; Goodman, D. W. Surf. Sci. 1994, 306,269. https://doi.org/10.1016/0039-6028(94)90071-X
  29. Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Phys. Chem. Chem. Phys. 2000, 2, 1319. https://doi.org/10.1039/a908800h
  30. Kosmulski, M. Chemical Properties of Material Surfaces; Marcel Dekker: 2001.
  31. Lewis, J. A. J. Am. Ceram. Soc. 2000, 83, 2341. https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
  32. Brunelle, J. P. Pure Appl. Chem. 1978, 50, 1211. https://doi.org/10.1351/pac197850091211

Cited by

  1. Electrode vol.116, pp.43, 2012, https://doi.org/10.1021/jp307783q
  2. Structural and optical properties of Eu2O3 coated TiO2 nanoparticles and their application for dye sensitized solar cell vol.24, pp.4, 2013, https://doi.org/10.1007/s10854-012-0892-5
  3. -based MK-2 dye-sensitized solar cells vol.17, pp.23, 2015, https://doi.org/10.1039/C5CP01816A
  4. nanochannel arrays for photovoltaic applications vol.7, pp.18, 2015, https://doi.org/10.1039/C5NR00202H
  5. –Ag core–shell or hybrid nanoparticles vol.40, pp.12, 2016, https://doi.org/10.1039/C6NJ01511E
  6. Nanocrystals as Efficient DSSC Photoanode Material and Remarkable Photocurrent Enhancement by Interface Modification vol.159, pp.9, 2012, https://doi.org/10.1149/2.032209jes
  7. Recent development of core-shell SnO2nanostructures and their potential applications vol.2, pp.33, 2010, https://doi.org/10.1039/c4tc01030b