Transmitting Ability of Halogen Light in Different Composite Resin Colors

복합레진 색상에 따른 Halogen light의 투과도

  • Cho, Kyung-Mo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University)
  • 조경모 (강릉원주대학교 치과대학 치과보존학교실)
  • Received : 2010.11.10
  • Accepted : 2010.12.25
  • Published : 2010.12.30

Abstract

The purpose of this study was to compare the light transmitting ability of halogen light in different colors and thicknesses. A1, A2, A3 colors of Z-250 composite resin(3M ESPE, St. Paul, U.S.A.) were used. Degree of conversion of separated resin specimens under the 2, 3, 4mm thickness resin were measured by FTIR spectroscopy. The result shows that decrease of degree of conversion by increase of resin thickness and decrease of degree of conversion by decrease of lightness of color. Within the limitation of results, it is recommended to use more light color of composite resin in small thickness to improve degree of conversion when use halogen light.

본 연구에서는 할로겐 광원의 빛이 복합레진의 색상과 두께에 따라 어느 정도 투과가 되는지를 비교하고자 Z-250 복합레진 (3M ESPE, St. Paul, U.S.A.)의 A1, A2, A3 색상에서 2, 3, 4 mm 로 두께를 달리한 뒤 밑면에서 복합레진 본체와 차단된 복합레진 시편의 중합도를 FTIR spectroscopy로 측정하였다. 그 결과 색상이 어두워질수록 할로겐 광원의 투과능력은 감소하였으며 두께가 두꺼워질수록 할로겐 광원의 투과능력이 감소하였다. 위의 결과를 바탕으로 할로겐 광원을 이용하는 중합도를 향상시키기 위해서는 복합레진의 색상을 밝은 것으로 이용하며 가급적 얇은 두께로 복합레진을 충전하여야 할 것으로 사료된다.

Keywords

References

  1. Bowen RL. Adhesive bonding of various materials to hard tooth tissues. II. Bonding to dentin promoted by a surface-active comonomer. J Dent Res, 1965;44(5): 895-902. https://doi.org/10.1177/00220345650440052401
  2. Imazato S, Tarumi H, Kobayashi K et al. Relationship between the degree of conversion and internal discoloration of light-activated composite. Dent Mater J 1995;14(1): 23-30. https://doi.org/10.4012/dmj.14.23
  3. Rees JS, Jacobsen PH. The polymerization shrinkage of composite resins. Dent Mater 1989;5(1):41-44. https://doi.org/10.1016/0109-5641(89)90092-4
  4. Pilo R, Cardash HS. Post-irradiation polymerization of different anterior and posterior visible lightactivated resin composites. Dent Mater 1992;8(5): 299-304. https://doi.org/10.1016/0109-5641(92)90104-K
  5. Gee AJ, Harkel-Hagenaar E, Davidson CL. Color dye for identification of incompletely cured composite resins. J Prosthet Dent 1984;52(5): 626-631. https://doi.org/10.1016/0022-3913(84)90129-X
  6. Shintani H, Inoue T, Yamaki M. Analysis of camphorquinone in visible light-cured composite resins. Dent Mater 1985;1(4): 124-126. https://doi.org/10.1016/S0109-5641(85)80002-6
  7. Rueggeberg FA, Caughman WF, Curtis JW Jr. et al. Factors affecting cure at depths within light-activated resin composites. Am J Dent 1993;6(2): 91-95.
  8. McCabe JF : Cure performance of light-activated composites by differential thermal analysis (DTA). Dent Mater 1985;1(6): 231-234. https://doi.org/10.1016/S0109-5641(85)80048-8
  9. Halvorson RH, Erickson RL, Davidson CL. The effect of filler and silane content on conversion of resin-based composite. Dent Mater 2003;19(4): 327-333. https://doi.org/10.1016/S0109-5641(02)00062-3
  10. Eliades GC, Vougiouklakis GJ, Caputo AA. Degree of double bond conversion in light-cured composites. Dent Mater 1987;3(1): 19-25. https://doi.org/10.1016/S0109-5641(87)80055-6
  11. Yoshida K, Greener EH. Effect of photoinitiator on degree of conversion of unfilled light-cured resin. J Dent 1994;22(5): 296-299. https://doi.org/10.1016/0300-5712(94)90064-7
  12. Ferracane JL, Greener EH. Fourier transform infrared analysis of degree of polymerization in unfilled resins--methods comparison. J Dent Res 1984;63(8): 1093-1095. https://doi.org/10.1177/00220345840630081901
  13. Cook WD. Curing efficiency and ocular hazards of dental photopolymerization sources. Biomaterials 1986;7(6): 449-454. https://doi.org/10.1016/0142-9612(86)90033-5
  14. Fan PL, Schumacher RM, Azzolin K et al. Curinglight intensity and depth of cure of resin-based composites tested according to international standards. J Am Dent Assoc 2002;133(4): 429-434. https://doi.org/10.14219/jada.archive.2002.0200
  15. Swartz ML, Phillips RW, Rhodes B. Visible light-activated resins depth of cure. J Am Dent Assoc 1983;106(5): 634-637. https://doi.org/10.14219/jada.archive.1983.0140
  16. Onose H, Sano H, Kanto H et al. Selected curing characteristics of light-activated composite resins. Dent Mater 1985;1(2): 48-54 https://doi.org/10.1016/S0109-5641(85)80024-5
  17. Takamizu M, Moore BK, Setcos JC et al. Efficacy of visible-light generators with changes in voltage. Oper Dent 1988;13(4): 173-180.
  18. Ferracane JL, Aday P, Matsumoto H et al. Relationship between shade and depth of cure for light-activated dental composite resins. Dent Mater 1986;2(2): 80-84. https://doi.org/10.1016/S0109-5641(86)80057-4
  19. DeWald JP, Ferracane JL. A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 1987;66(3): 727-730. https://doi.org/10.1177/00220345870660030401
  20. Kawaguchi M, Fukushima T, Miyazaki K. The relationship between cure depth and transmission coefficient of visible-light-activated resin composites. J Dent Res 1994;73(2): 516-521. https://doi.org/10.1177/00220345940730020601
  21. Rueggeberg FA, Caughman WF, Curtis JW Jr. et al. Factors affecting cure at depths within light-activated resin composites. Am J Dent 1993;6(2): 91-95.
  22. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil 1994;21(4): 441-452. https://doi.org/10.1111/j.1365-2842.1994.tb01158.x
  23. Swift EJ Jr, Hammel SA, Lund PS. Colorimetric evaluation of vita shade resin composites. Int J Prosthodont 1994;7(4): 356-61.
  24. Imazato S, McCabe JF, Tarumi H et al. Degree of conversion of composites measured by DTA and FTIR. Dent Mater 2001; 17(2):178-183. https://doi.org/10.1016/S0109-5641(00)00066-X