광합성 미세조류 Nannochloropsis oculata의 최적배양 조건

Optimal Culture Conditions for Photosynthetic Microalgae Nannochloropsis oculata

  • 박현진 (신라대학교 공과대학 생명공학과) ;
  • 진은정 (신라대학교 공과대학 생명공학과) ;
  • 정태만 (에이엠 바이오(주)) ;
  • 주현 (인제대학교 생리학교실) ;
  • 이재화 (신라대학교 공과대학 생명공학과)
  • Park, Hyun-Jin (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Jin, Eun-Jung (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Jung, Tae-Man (Marine-Bio Center, Silla University) ;
  • Joo, Hyun (Department of Physiology and Integrated Biosystems, College of Medicine, Inje University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • 투고 : 2010.09.06
  • 심사 : 2010.09.28
  • 발행 : 2010.12.10

초록

미세조류는 전 세계 바다에 분포하고 있으며 일부 종들은 인간의 식품에 이용되어 왔다. 특히, 광합성 미세조류 Nannochloropsis oculata는 영양적 가치가 우수하여 관심을 받고 있다. 본 연구에서는 광합성 미세조류 Nannochloropsis oculata의 고농도배양을 위한 배양온도, 초기 pH, 배양액 선정, 인공해수 농도, 배지농도, $CO_2$영향 등 최적조건을 확립하고자 하였다. 그 결과, 3%의 인공해수, 초기 pH 8.5, 배양온도 $25^{\circ}C$가 최적 배양조건으로 판별되었다. 미세조류에 $CO_2$를 공급하지 않았을 때에는 건조 균체량이 0.76 g/L이었지만, 5% $CO_2$ 공급 이후 1.50 g/L로 높은 성장률을 보였다. 클로로필 생합성은 미세조류 성장과 깊은 연관이 있는 것으로 판명되었다.

Microalgae has been seen all over the seawater and several species are used for human food. Specially, Nannochloropsis oculata, a photosynthetic microalgae, has been focused for a vast array of valuable nutritious compounds. In order to find high mass Nannochloropsis oculata culture conditions, some of important growth factors of pH, temperature, culture media, and $CO_2$ effect were tested. The optimal growth condition was found to be as follows : 3% artificial seawater, initial pH 8.5, and temperature $25^{\circ}C$. The alga mass and chlorophyll content were dramatically increased by applying 5% flue $CO_2$ gas (1.50 g/L algae in a continuous $CO_2$ flue; 0.76 g/L alga without $CO_2$). It was shown that the chlorophyll biosynthesis was also closely associated with alga growth.

키워드

참고문헌

  1. J. H. Kim, C. M. Choi, W. I. Kim, J. S. Lee, G. B. Jung, J. D. Shin, J. S. Sung, J. T. Lee, and S. G. Yun, Korean Journal of Environmental Agriculture, 26, 7 (2007). https://doi.org/10.5338/KJEA.2007.26.1.007
  2. D. S. Joo, C. K. Jung, C. H. Lee, and S. Y. Cho, J. Korean Fish. Soc., 33, 475 (2000).
  3. S. K. Kim, H. C. Baek, H. G. Byun, O. J. Kang, and J. B. Kim, J. Korean Fish. Soc., 34, 260 (2001).
  4. E. K. Park, M. W. Seo, and C. G. Lee, Kor. J. Appl. Microbiol. Biotechnol., 29, 227 (2001).
  5. A. Vonshak, Biotechnol. Adv., 8, 709 (1990). https://doi.org/10.1016/0734-9750(90)91993-Q
  6. T. Ogawa and G. Terui, J. Ferment. Technol., 48, 361 (1970).
  7. Y. S. Kim, Chemical J., 8, 35 (1995).
  8. R. R. L. Guillard and J. H. Ryther, Grand. Can. J. Microbiol., 3, 229 (1962).
  9. L. Krienitz, D. Hepperle, H. B. Stich, and W. Weiler, Phycologia., 39, 219 (2000). https://doi.org/10.2216/i0031-8884-39-3-219.1
  10. http://www.reed-mariculture.com
  11. D. H. Hwang and A. E. Carroll, Am. J. Clin. Nutr., 33, 590 (1980). https://doi.org/10.1093/ajcn/33.3.590
  12. M. Y. Lee and H. W. Shin, J. Appl. Phycol., 15, 13 (2003). https://doi.org/10.1023/A:1022903602365
  13. B. S. Min, MS disseretation, Dept. of Genetic Engineering, Graduate school, Soonchunhyang University, 91 (2004).
  14. M. Y. Lee, B. S. Min, C. S. Chang, and E. S. Jin, Marine Biotechnol., 8, 238 (2006). https://doi.org/10.1007/s10126-006-5078-9
  15. W. Moshe, S. Assaf, and M. Shoshana, Biosci. Biotechnol. Biochem., 67, 2266 (2003). https://doi.org/10.1271/bbb.67.2266
  16. M. A. Borowitzka, J. Appl. Phycol., 4, 267 (1992). https://doi.org/10.1007/BF02161212
  17. H. M. Oh, J. S. Kim, and S. J. Lee, Kor. J. of Environ. Biol., 16, 291 (1998).
  18. T. H. Kim, K. D. Sung, J. S. Lee, J. Y. Lee, S. J. Oh, and H. Y. Lee, Kor. J. Appl. Microbiol. Biotechnol., 25, 237 (1997).
  19. J. Carlos, R. C. Belen, L. Diego, and N. Xavier, Aquaculture., 217, 179 (2003). https://doi.org/10.1016/S0044-8486(02)00118-7
  20. J. Carlos, R. C. Belen, and N. Xavier, Aquaculture, 221, 331 (2003). https://doi.org/10.1016/S0044-8486(03)00123-6
  21. C.-G. Lee, Korea Society of Biotechnology and Bioengineering Conference and Bio-Venture Fair, 41 (2000).
  22. Y. M. Kim, J. Y. Kim, S. M. Lee, J. M. Ha, T. H. Kwon, and J. H. Lee, Appl. Chem. Eng., 21, 1 (2010).
  23. Y. M. Kim, M. R. Kim, T. H. Kwon, J. M. Ha, and J. H. Lee, J. Korean Ind. Eng. Chem., 20, 285 (2009).
  24. D. S. Joo, M. G. Cho, R. Buchholz, and E. H. Lee, J. Korean Fish. Soc., 31, 409 (1998).
  25. D. S. Joo, C. K. Jung, C. H. Lee, and S. Y. Cho, J. Korean Fish. Soc., 33, 475 (2000).
  26. Y. S. Kim, H. I. Park, D. K. Kim, and D. W. Park, Korean J. Biotechnol. Bioeng., 18, 277 (2003).
  27. D. J. Mchugh, FAO Fish. Tech. Pap., 441, 105 (2003).
  28. L. Krienitz, D. Hepperle, H. B. Stich, and W. Weiler, Phycologia., 39, 219 (2000). https://doi.org/10.2216/i0031-8884-39-3-219.1
  29. G. A. Cood, K. Okabe, and W. P. Stewart, Arch. Microbiol., 124, 149 (1980). https://doi.org/10.1007/BF00427720
  30. P. C. Chen, Ph. D. Dissertation, Gottingen Univ., Germany (1979).