Pyrolysis and Combustion Characteristics of an Oriental Oak Leaf

굴참나무 잎의 열분해 및 연소 특성 연구

  • Seo, Young-Hoon (Department of Chemical Engineering, Kyung Hee University) ;
  • Park, Jin-Mo (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Myung-Wook (Department of Civil & Environmental Engineering, Hanzhong University) ;
  • Kim, Jin-Soo (Department of Chemical Engineering, Kyung Hee University) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University)
  • 서영훈 (경희대학교 화학공학과) ;
  • 박진모 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 이명욱 (한중대학교 토목환경공학과) ;
  • 김진수 (경희대학교 화학공학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2010.07.24
  • Accepted : 2010.08.04
  • Published : 2010.10.10

Abstract

Forest fires in Korea, having forest coverage of 70%, have kept increasing in number and scale since the middle of 1990's. Although deposited fallen leaves in forests such as herbaceous plants, conifers, and broadleaf trees are used as a medium for forest fires, the pyrolysis and combustion characteristics of the various species of trees are hardly studied. Oriental oak is the representative broadleaf tree in domestic forests, and pyrolysis and combustion of oriental oak leaf were carried out by thermogravimetic analysis (TGA). The leaf of oriental oak was ignited at $239^{\circ}C$ whereas pyrolysis started at $250^{\circ}C$. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for pyrolysis were increased as the conversion increases from 10% to 80%, whereas those of values were decreased during combustion.

우리나라는 전국토의 70%가 산림지역으로 1990년대 중반 이후 산불발생 건수가 지속적으로 증가하고 있고, 그 규모 또한 대형화되는 추세이다. 산림 내에 퇴적된 낙엽, 초본류, 침엽수 및 활엽수 등이 산불발생 시 매개체가 되며, 이들 수종별 연소 및 열분해 특성에 대한 연구는 미미한 실정이다. 본 발표에서는 국내 산림의 대표적 활엽수인 굴참나무 잎을 대상으로 TGA를 이용해 열분해반응 및 연소 특성에 대한 연구를 수행하였다. 굴참나무 잎은 $239^{\circ}C$ 부근에서 발화가 시작되며 열분해는 $250^{\circ}C$에서부터 시작되었다. TGA 분석으로부터 얻은 실험데이터는 미분법을 적용하여 전화율 변화에 따라 활성화에너지와 전지수인자를 계산하였다. 열분해반응에서 활성화에너지는 전화율 증가에 따라 증가하였으나, 연소과정에서의 활성화에너지는 감소하는 경향을 나타냈다.

Keywords

References

  1. http://sanfire.forest.go.kr/foahome.
  2. M. W. Lee, Analysis of occurance and characteristics of forest fires of Yeongdong and Yeongseo regions in Gangwon-do, Research Institute for Gangwon, Project No. 09-05 (2009).
  3. D. L. Fry and S. L. Stephens, Forest Ecol. Manag., 223, 428 (2006). https://doi.org/10.1016/j.foreco.2005.12.021
  4. K. L. Metlen and C. E. Fiedler, Forest Ecol. Manag., 222, 355 (2006). https://doi.org/10.1016/j.foreco.2005.10.037
  5. R. P. Guyette and M. A. Spetich, Forest Ecol. Manag., 180, 463 (2003). https://doi.org/10.1016/S0378-1127(02)00613-8
  6. M. M. Boer, R. J. Sadler, R. S. Wittkuhn, L. McCaw, and P. F. Grierson, Forest Ecol. Manag., 259, 132 (2009). https://doi.org/10.1016/j.foreco.2009.10.005
  7. S.-Y. Lee and H.-P. Lee, J. Korean Institute Fire Sci. Eng., 20, 54 (2006)
  8. H.-P. Lee, S.-Y. Lee, Y.-J. Park, J. Korean Institute Fire Sci. & Eng., 23, 21 (2009).
  9. Y. J. Chung, J. Ind. Eng. Chem., 16, 15 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  10. Annual Book of ASTM Standard (1997).
  11. Y.-H. Park, J. Kim, S.-S. Kim, and Y.-K. Park, Bioresource Technol., 100, 400 (2009). https://doi.org/10.1016/j.biortech.2008.06.040
  12. S.-S. Kim and F. A. Agblevor, Waste Manage., 27, 135 (2007). https://doi.org/10.1016/j.wasman.2006.01.012
  13. A. Demirbas, Fuel, 76, 431 (1997). https://doi.org/10.1016/S0016-2361(97)85520-2
  14. M. Müller-Hagedorn, H. Bockhorn, L. Krebs, and U. Müller, J. Anal. Appl. Pyrol., 68-69, 231 (2003). https://doi.org/10.1016/S0165-2370(03)00065-2
  15. T. B. Reed and S. Gaur, Biomass Bioenerg., 7, 143 (1994). https://doi.org/10.1016/0961-9534(94)00053-V
  16. T. Fisher, M. Hajaligol, B. Waymack, and D. Kellogg, Ind. Eng. Chem. Res., 36, 1444 (2003).