Study on Desorption Reaction of VOC Produced from Manufacturing of Chemical Products

화학제품 제조업에서 발생한 VOC의 탈착반응 연구

  • Park, Kuny-Ik (Department of Chemical Engineering, Chungnam National University) ;
  • Yoon, Sung-Min (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Joo-Yeon (Department of Chemical Engineering, Chungnam National University) ;
  • Kil, In-Sub (Siheung Enviromental Technology Development Center, Korea Polytechnic University) ;
  • Park, Hi-Jae (Siheung Enviromental Technology Development Center, Korea Polytechnic University) ;
  • Rhee, Young-Woo (Graduate School of Green Energy Technology, Chungnam National University)
  • 박근익 (충남대학교 공과대학 화학공학과) ;
  • 윤성민 (충남대학교 공과대학 화학공학과) ;
  • 김주연 (충남대학교 공과대학 화학공학과) ;
  • 길인섭 (시흥환경기술개발센터) ;
  • 박희재 (시흥환경기술개발센터) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2010.04.16
  • Accepted : 2010.06.27
  • Published : 2010.10.10

Abstract

The characteristics of desorption reaction for spent activated carbon produced from the manufacture of other chemical products in Shiwha/Banwal industrial complex were investigated. TGA (Thermogravimetric Analyzer) was used to study for characteristics of desorption and kinetics. Then Friedman method and Freeman-carroll method were used to find the activation energy and the order of reaction. Activation energy by Friedman method was 24.82~46.49 kJ/moL. And then activation energy and order of reaction by Freeman-carroll method were 8.77~32.26 kJ/moL and 0.11~1.69.

시화/반월 산단 내에서 활성탄 흡착탑을 사용하는 업종 중 기타 화학제품 제조업종에서 수거한 폐활성탄의 탈착반응 특성을 조사하였다. 탈착특성을 조사하기 위하여 열중량분석기(Thermogravimetric Analyzer, TGA)가 사용되었다. 탈착 반응특성 비교에 중요한 요소인 반응차수와 활성화 에너지를 구하기 위하여 Friedman법과 Freeman-carroll법을 사용하였다. 기타 화학제품 제조업종에서 수거한 폐활성탄으로 Friedman법을 이용하여 활성화 에너지를 계산한 결과, 24.8~46.5 kJ/moL을 나타내었으며, Freeman-carroll법을 이용하여 반응차수와 활성화 에너지를 계산한 결과, 반응차수는 0.11~1.69, 활성화 에너지는 8.77~32.26 kJ/moL이었다.

Keywords

References

  1. J. Y. Kim, H. S. Lee, J. K. Yu, I. S. Kil, D. H. Kim, and Y. W. Rhee, J. of Korean Society of Environmental Engineers, 32, 1229 (2005).
  2. S. H. Byeon, J. G. Lee, and J. G. Kim, J. of Korean Socity of Environmental Engineers, 32, 1229 (2010).
  3. H. T. Song, S. W. Kang, B. H. Min, and S. S. Suh, Clean Technology, 12, 153 (2003).
  4. B. K. Seo, Y. S. Na, and S. K. Song, J. of the Environmental Sciences, 12, 825 (2003). https://doi.org/10.5322/JES.2003.12.7.825
  5. R. Samuelsson, C. Nilsson, and J. Burvall, Biomass and Bioenergy, 30, 923 (2006). https://doi.org/10.1016/j.biombioe.2006.06.003
  6. Y. W. Rhee, Efficiency Evaluation of Activated Carbon Beds Operated in Shiwha/Banwal Industrial Complex, ed. M. C. Seo, Siheung Environmental Technology Development Center, Siheung, Korea (2007).
  7. D. J. Yang, J. K. Kim, I. S. Kil, S. M. Yoon, J. Y. Kim, and Y. W. Rhee, Korean J. of Oder Research and Engineering, 8, 173 (2009).
  8. Y. W. Rhee, the Study of Management Plan and Apporpriate Replacement Cycle for the Activated Carbon and Scrubbing Liquid in Shiwha/Banwal Industrial Complex, ed. J. K. Kim, Siheung Environmental Technology Development Center, Siheung, Korea (2008).
  9. Y. W. Rhee, Investigation on Recovery of Energy Resources from Waste Activated Carbons Generated in VOC Adsorption Towers of Shiwha/Banwal Industrial Complex, ed. J. K. Kim, Siheung Environmental Technology Development Center, Siheung, Korea (2009).