Effects of Oxyfluorination on Surface Graft Polymerization of Low Density Polyethylene Film and Its Surface Characteristics

함산소불소화가 저밀도 폴리에틸렌 표면의 그라프트 중합 및 그 표면 특성에 미치는 영향

  • Yun, Seok-Min (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Woo, Sang-Wook (Department of Applied Chemistry, Tokyo Metropolitan University) ;
  • Jeong, Eui-Gyung (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Bai, Byong-Chol (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Park, In-Jun (Research Center for Biorefinery, Korea Reserch Institute of Chemical Technology) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
  • 윤석민 (충남대학교 공과대학 정밀응용화학과) ;
  • 우상욱 (도쿄 메트로폴리탄 대학교 응용화학과) ;
  • 정의경 (충남대학교 공과대학 정밀응용화학과) ;
  • 배병철 (충남대학교 공과대학 정밀응용화학과) ;
  • 박인준 (한국화학연구원 바이오리파이너리센터) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2010.02.20
  • Accepted : 2010.03.29
  • Published : 2010.06.10

Abstract

The surface of low density polyethylene (LDPE) film was oxyfluorinated under different reaction conditions to introduce hydroperoxide groups and change surface characteristics. Hydroperoxide functional groups created by oxyfluorination were used as active sites for graft polymerization with hydrophobic monomer, acryl amide (AM), and hydrophilic monomer, methyl methacrylate (MMA) to carry out the second modification of the LDPE film surface. The surface properties of the OFPE films and grafted OFPE films were characterized by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, ATR-IR, contact angle measurement and DSC. From the results of DPPH method, the amount of hydroperoxide groups on the oxyfluorinated LDPE film continuously increased as the total pressure in the oxyfluorination and the partial pressure of fluorine gas increased. The water contact angle and surface free energy measurements showed that hydrophilic liquid (water) contact angle on LDPE film surface decreased with hydrophilic AM grafting and hydrophobic liquid (methylene diiodide) contact angle on LDPE film surface decreased with hydrophobic MMA grafting. These were attributed to AM or MMA monomer grafting and the wettability of LDPE filmsurface to hydrophilic and hydrophobic liquids were improved.

저밀도 폴리에틸렌(low density polyethylene, LDPE) 필름의 표면을 다양한 반응 조건하에서 함산소불소화하여 hydroperoxide 관능기를 도입시켜 표면특성을 변화시켰다. 또한 생성된 hydroperoxide 관능기를 반응 개시제로 친수성 그룹을 가지는 단량체인 acryl amide (AM)와 소수성 그룹을 가지는 단량체인 methyl methacrylate (MMA)를 그라프트 중합시켜 LDPE 필름의 표면을 2차 개질하였다. 또한 LDPE, 함산소불소화 된 LDPE (OFPE), AM 및 MMA 단량체가 그라프트 된 OFPE 필름의 표면특성은 1,1-diphenyl-2-picrylhydrazyl (DPPH), 감쇠전반사 분광법, 시차주사 열량분석기 및 접촉각 측정법 등으로 분석하였다. DPPH 라디칼 분석법의 결과로부터, OFPE의 hydroperoxide 관능기의 양은 함산소불소화 총압력과 F2 가스의 부분압이 증가함에 따라 증가함을 알 수 있었다. 접촉각 및 표면 자유에너지 분석결과로부터, 함산소불소화에 의해서 생성된 hydroperoxide 관능기와 AM과 같은 친수성 그룹을 가지는 단량체의 그라프트 중합은 LDPE 필름 표면에서 물과 같은 친수성 용매의 접촉각을 감소시키고, MMA와 같은 소수성 그룹을 가지는 단량체의 경우는 LDPE 필름 표면에서 methylene diiodide와 같은 비극성 용매의 표면 접촉각을 감소시켰다. 이는 AM 및 MMA 단량체의 그라프트 중합에 의한 것으로, LDPE 필름 표면은 친수성 및 소수성 용매에 대한 젖음성이 향상되었다.

Keywords

References

  1. S. M. Cho, Y. C. Lee, S. H. Hwang, S. W. Lee, and S. K. Kim, J. Ind. Eng. Chem., 7, 504 (1996).
  2. Y. C. Nho, J. I. Jim, and P. H. Kang, J. Ind. Eng. Chem., 12, 888 (2006).
  3. J. I. Kim, P. H. Kang, and Y. C. Nho, J. Korean Ind. Eng. Chem., 12, 800 (2001).
  4. M. D. Duca and C. L. Plosceanu, T. Pop, Polym. Degrad. Stab., 61, 65 (1998). https://doi.org/10.1016/S0141-3910(97)00130-4
  5. A. Oshima, Y. Tabata, H. Kudoh, and T. Seguchi, Phys. Chem., 45, 269 (1995).
  6. T. Seguchi, T. Yagi, S. Ishikawa, and Y. Sano, Radiat. Phys. Chem., 63, 35 (2002). https://doi.org/10.1016/S0969-806X(01)00478-9
  7. S. R. J. Oliver, N. Bowden, and G. M. Whitesides, J. Colloid Interface Sci., 224, 425 (2000). https://doi.org/10.1006/jcis.1999.6695
  8. J. Lei and X. Liao, Eur. Polym. J., 37, 771 (2001). https://doi.org/10.1016/S0014-3057(00)00177-4
  9. Z. Hruska and X. Lepot, J. Fluorine Chem., 105, 87 (2000). https://doi.org/10.1016/S0022-1139(00)00292-X
  10. A. P. Kharitonov, Prog. Org. Coat., 61, 192 (2008). https://doi.org/10.1016/j.porgcoat.2007.09.027
  11. A. Tressaud, E. Durand, C. Labrugère, A. P. Kharitonov, and L. N. Kharitonova, J. Fluorine Chem., 128, 378 (2007). https://doi.org/10.1016/j.jfluchem.2006.12.015
  12. M. Anand, J. P. Hobbs, and I. J. Brass, In Organofluorine Chemistry: Principles and commercial Applications, eds. R. E. Banks, B. E. Smart, J. C. Tatlow, 469, Plenum Press, New York (1994).
  13. A. P. Kharitonov, R. Taege, G. Ferrier, V. V. Teplyakov, D. A. Syrtsova, and G. H. Koops, J. Fluorine Chem., 126, 251 (2005). https://doi.org/10.1016/j.jfluchem.2005.01.016
  14. G. R. Newkome and C. D. Shreiner, Polymer, 49, 1 (2008). https://doi.org/10.1016/j.polymer.2007.10.021
  15. Q. Shi, L. C. Zhu, C. L. Cai, J. H. Yin, and G. Costa, Polymer, 47, 1979 (2006). https://doi.org/10.1016/j.polymer.2006.01.012
  16. G. Zhao, Y. Chen, and X. Wang, Applied Surface Science, 253, 4709 (2007). https://doi.org/10.1016/j.apsusc.2006.10.036
  17. J. J. Robin, C. Boyer, B. Boutevin, and C. Loubat, Polymer, 49, 4519 (2008). https://doi.org/10.1016/j.polymer.2008.08.011
  18. S. D. Kim, J. W. Kim, J. S. Im, Y. H. Kim, and Y. S. Lee, J. Fluorine Chem., 128, 60 (2007). https://doi.org/10.1016/j.jfluchem.2006.10.010
  19. Y. S. Lee, J. Fluorine Chem., 128, 392 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.014
  20. D. M. Brewis, J. Adhes. Sci. Technol, 37, 97 (1992).
  21. P. Wang, K. L. Tan, E. T. Kang, and K. G. Neoh, J. Materials Chem., 11, 783 (2001). https://doi.org/10.1039/b007310p
  22. B. K. Lee and J. S. Rho, J. Korean Ind. Eng. Chem., 12, 353 (2001).
  23. A. P. Kharitonov and Y. L. Moskvin, J. Fluorine Chem., 91, 87 (1998). https://doi.org/10.1016/S0022-1139(98)00200-0
  24. W. Lu, C. Huang, and M. Roan, Surf. Coat. Tech., 172, 251 (2003). https://doi.org/10.1016/S0257-8972(03)00337-2
  25. N. Hara, H. Fukumoto, and M. Watanabe, B. Chem. Soc. Jepan, 68, 1232 (1995). https://doi.org/10.1246/bcsj.68.1232
  26. R. J. Lagow and J. L. Margrave, Progr. Inorg. Chem., 26, 162 (1979).
  27. S. W. Woo, M. Y. Song, J. S. Rho, and Y. S. Lee, J. Ind. Eng. Chem., 11, 55 (2005). https://doi.org/10.2298/CICEQ0502055M