Fluorination of Polymethylmethacrylate (PMMA) Film and Its Surface Characterization

폴리메틸메타아크릴레이트(PMMA) 필름의 불소화 및 그 표면특성

  • Jung, Min-Jung (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lim, Jae-Won (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, In-Jun (Research Center for Biorefinery, Korea Research Institute of Chemical Technology) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 정민정 (충남대학교 정밀응용화학과) ;
  • 임재원 (충남대학교 정밀응용화학과) ;
  • 박인준 (한국화학연구원 바이오리파이너리센터) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2010.02.10
  • Accepted : 2010.02.25
  • Published : 2010.06.10

Abstract

In this study, poly(methyl methacrylate) (PMMA) was treated with changing mixing ratios of $F_2$ and $O_2$ using oxyfluorination method for hydrophilic modification of PMMA film. For the characterizations of oxyfluorinated PMMA surface, contact angle, surface free energy, X-ray photoelectron spectroscopy (XPS) and optical transmittance (UV-vis) were carried out. After the oxyfluorination, PMMA surface became more hydrophilic showing the decrease of water contact angle from $69^{\circ}$ to $44^{\circ}$. So, surface free energy of oxyfluorinated PMMA film was increased from 46 to $58\;mN\;m^{-1}$. These results are attributed to hydrophilic functional groups such as hydroxyl group formed oxyfluorination method on the PMMA surface. From XPS results, it was confirmed that O/C concentration ratio on the surface of PMMA was increased, the amount of C-OH bonding which shows hydrophilicity was also largely increased from 6.7 to 24.8% with increasing fluorine partial-pressure via the oxyfluorination, The oxyfluorination conditions, room temperature, 1 bar with one mixture ratio of $F_2$ to $O_2$ had little influence on optical transmittance properties of PMMA film but enhanced its surface hydrophilicity. This result suggests that oxyfluorination method could be useful to change hydrophobic PMMA surface to hydrophilic.

본 연구에서는 폴리메틸메타아크릴에이트(polymethylmethacrylate : PMMA) 표면을 친수성으로 개질하기 위하여 불소와 산소의 혼합비율을 변수로 하여 함산소불소화를 실시하였다. 함산소불소화 처리 된 PMMA 표면 및 광투과 특성을 접촉각, 표면자유에너지. X-ray 광전자 분광기(XPS), UV-Vis 분광기를 통하여 분석하였다. 함산소불소화 처리된 PMMA의 표면은 친수화 되어 물 접촉각이 $69^{\circ}$에서 $44^{\circ}$로 감소하였다. 또한 PMMA의 표면자유에너지가 $46\;mN\;m^{-1}$ 에서 $58\;mN\;m^{-1}$로 증가하였다. 이는 함산소불소화를 통한 PMMA표면에 친수성 관능기의 형성으로 기인하였다. 또한, XPS 분석 결과로부터 함산소불소화 처리 시 PMMA 표면에 O/C비율이 증가하였고, 불소 부분압이 증가할수록 친수성을 나타내는 C-OH 결합의 �t량이 6.7%에서 24.8%로 증가하는 것을 알 수 있었다. 본 함산소불소화 조건(상온, 총압 1 bar, 불소 및 산소 혼합비 5 : 5)에서는 함산소불소화가 PMMA의 광투과 특성에 영향을 주지 않으면서도 그 표면특성이 개선됨을 관찰할 수 있었다. 이 결과로부터 함산소불소화는 PMMA 표면을 친수성으로 개질하는데 효과적인 방법으로 기대된다.

Keywords

References

  1. W. J. Lee and J. C. Kim, J. Kor. Ophthalmol. Soc., 38, 1097 (1997).
  2. P. R. Laibson, Curr. Opin. Ophthalmol., 13, 220 (2002). https://doi.org/10.1097/00055735-200208000-00005
  3. B. Khan, E. J. Dudenhoefer, and C. H. Dohlman, Curr. Opin. Ophthalmol., 12, 282 (2001). https://doi.org/10.1097/00055735-200108000-00007
  4. G. D. Barret, J. Cataract. Refract. Surg., 20, 18 (1994). https://doi.org/10.1016/S0886-3350(13)80038-7
  5. E. S. Chung, W. R. Wee, S. H. Park, and J. H. Lee, J. Kor. Ophthalmol. Soc., 41, 34 (2000).
  6. S. P. B Percival and A. J. Jafree, Eye, 8, 672 (1994). https://doi.org/10.1038/eye.1994.166
  7. T. Oshika, Y. Suzuki, H. Kizaki, and S. Yaguchi, J. Cataract. Refract. Surg., 22, 104 (1996). https://doi.org/10.1016/S0886-3350(96)80278-1
  8. Y. Ohnishi, T. Yoshitomi, T. Sakamoto, K. Fujisawa, and T. Ishibashi, J. Cataract. Refract. Surg., 27, 2036 (2001). https://doi.org/10.1016/S0886-3350(01)00961-0
  9. L. Zhang, D. Wu, Y. Chen, X. Wang, G. Zhao, H. Wan, and C. Huang, Appl. Surf. Sci., 255, 6840 (2009). https://doi.org/10.1016/j.apsusc.2009.03.029
  10. Y. Tamada and Y. Ikada, J. Biomed. Mater. Res., 28, 783 (1994). https://doi.org/10.1002/jbm.820280705
  11. M. K. Kim, I. S. Park, H. D. Park, W. R. Wee, J. H. Lee, K. D. Park, and Y. H. Kim, J. Kor. Ophthalmol. Soc., 41, 42 (2000).
  12. F. Shen, E. Zhang, and Z. Wei, Mat. Sci. Eng. C-Bio. S., 30, 369 (2010). https://doi.org/10.1016/j.msec.2009.12.003
  13. C. Liu and B. J. Meenan, J. Bionic Eng., 5, 204 (2008). https://doi.org/10.1016/S1672-6529(08)60026-8
  14. J. M. Goddard and J. H. Hotchkiss, Prog. Polym. Sci., 32, 698 (2007). https://doi.org/10.1016/j.progpolymsci.2007.04.002
  15. E. M. Abdelrazek, G. E. Damrawi, I. S. Elashmawi, and A. El-Shahawy, Appl. Surf. Sci., 256, 2711 (2010). https://doi.org/10.1016/j.apsusc.2009.11.015
  16. T. S. Suh, C. K. Joo, Y. C. Kim, M. S. Lee, H. K. Lee, B. Y. Choe, and H. J. Chun, J. Appl. Polym. Sci., 85, 2361 (2002). https://doi.org/10.1002/app.10870
  17. J. W. Bae, D. H. Go, H. J. Chung, T. E. Kim, and K. D. Park, J. Korean Ind. Eng. Chem., 15, 693 (2004).
  18. Y. S. Lee, J. Fluor. Chem., 128, 392 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.014
  19. Y. S. Lee, Y. H. Kim, J. S. Hong, J. K. Suh, and G. J. Cho, Catal. Today, 120, 420 (2007). https://doi.org/10.1016/j.cattod.2006.09.014
  20. H. Y. Liu, X. J. Wang, L. P. Wang, F. Y. Lei, X. F. Wang, and H. J. Ai, Appl. Surf. Sci., 254, 6305 (2008). https://doi.org/10.1016/j.apsusc.2008.03.075
  21. X. S. Li, J. Turanek, P. Knotigova, H. Kudlackova, J. Masek, D. B. Pennington, S. E. Rankin, B. L. Knutson, and H. J. Lehmler, New J. Chem., 32, 2169 (2008). https://doi.org/10.1039/b805015e
  22. J. S. Im, J. Yun, Y. M. Lim, H. I. Kim, and Y. S. Lee, Acta Biomater., 6, 102 (2010). https://doi.org/10.1016/j.actbio.2009.06.017
  23. J. W. Lim, J. M. Lee, S. M. Yun, B. J. Park, and Y. S. Lee, J. Ind. Eng. Chem., 15, 876 (2009). https://doi.org/10.1016/j.jiec.2009.09.016
  24. S. W. Woo, M. Y. Song, J. S. Rho, and Y. S. Lee, J. Ind. Eng. Chem., 11, 55 (2005). https://doi.org/10.2298/CICEQ0502055M
  25. B. K. Lee, Y. S. Lee, Y. B. Chong, J. B. Choi, and J. S. Rho, J. Ind. Eng. Chem., 9, 426 (2003).
  26. S. J. Park, M. K. Seo, and Y. S. Lee, Carbon, 41, 723 (2003). https://doi.org/10.1016/S0008-6223(02)00384-6
  27. F. M. Fowkes, J. Phys. Chem., 66, 382 (1962). https://doi.org/10.1021/j100808a524
  28. J. H. Kim, W. H. Jo, and W. S. Ha, Polymer, 5, 450 (1981).
  29. D. R. Sherwood, W. J. Rich, J. S. Jacob, R. J. Hart, and Y. L. Fairchild, Eye, 3, 308 (1989). https://doi.org/10.1038/eye.1989.44
  30. G. Beamson, D. T. Clark, and D. S. L. Law, Surf. Interface Anal., 27, 76 (1999). https://doi.org/10.1002/(SICI)1096-9918(199902)27:2<76::AID-SIA470>3.0.CO;2-R
  31. S. Guruvenket, G. R. S. Iyer, L. Shestakova, P. Morgen, N. B. Larsen, and G. M. Rao, Appl. Surf. Sci., 254, 5722 (2008). https://doi.org/10.1016/j.apsusc.2008.03.045
  32. B. K. Lee and J. S. Rho, J. Korean Ind. Eng. Chem., 12, 353 (2001).
  33. T. H. Kim, K. H. Ye, and A. Y. Sung, J. Kor. Chem. Soc., 53, 340 (2009). https://doi.org/10.5012/jkcs.2009.53.3.340