감압하에서 1-propanol과 Bromochloromethane의 정압 기-액 평형

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Bromochloromethane System at Subatmospheric Pressures

  • 장회구 (전남대학교 공과대학 응용화학공학부) ;
  • 강춘형 (전남대학교 공과대학 응용화학공학부)
  • Jang, Hoi-Gu (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kang, Choon-Hyoung (School of Applied Chemical Engineering, Chonnam National University)
  • 투고 : 2010.01.27
  • 심사 : 2010.02.25
  • 발행 : 2010.06.10

초록

1-propanol과 bromochloromethane 혼합물은 공비점의 형성이나 큰 휘발성 차이 때문에 실제 증류탑이나 흡수탑 등의 단위 공정에서 효율적이고 경제적인 운전이 쉽지 않다. 이처럼 비이상성이 큰 혼합물을 효과적으로 다루기 위해서는 혼합물에 대한 기-액 평형 등의 열역학적인 정보가 필수적이다. 본 연구에서는 재순환 기-액 평형장치를 이용하여 일정 압력 하에서 30 kPa에서 70 kPa까지 1-propanol과 bromochloromethane 혼합물의 기-액 평형을 측정하였으며 얻어진 실험 데이터를 UNIQUAC과 NRTL 모델식을 이용하여 상관하였고 과잉 Gibbs 에너지와 활동도 계수를 추산하였다. 또한 Gibbs/Duhem식에 근거한 열역학적 건전성 테스트를 수행하였고 진동 밀도계를 사용하여 이성분계의 과잉 몰부피를 측정하였으며 그 결과를 Redlich-Kister다항식으로 상관하였다.

A binary system of 1-propanol and bromochloromethane which exhibits an azeotropic point and a considerable nonideal phase behavior probably due to the large boiling point difference is not amenable in the actual chemical processes such as the distillation tower and absorber. Therefore, experimental data of phase behavior data of this mixture are indispensable in understanding the inherent thermodynamic characteristics for an efficient application of the system in the industrial processes. In this work, the isobaric vapor-liquid equilibrium of a binary mixture consisting of 1-propanol and bromochloromethane was measured by using a recirculating equilibrium cell at various pressures ranging from 30 to 70 kPa. The measured VLE data were correlated in a satisfactory manner by using the UNIQUAC and NRTL models along with the thermodynamic consistency test based on Gibbs/Duhem equation. In addition, the excess molar volume of the mixture was also measured by using a vibrating densitometer and correlated with a Redlich-Kister polynomial.

키워드

참고문헌

  1. M. Grayson, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Wiley, New York (1978).
  2. S. J. Park and M. S. Doh, HWAHAK KONGHAK, 35, 46 (1997).
  3. M. Artal, J. M. Embid, S. Otin, and I. Velasco, Fluid Phase Equilibria, 154, 223 (1999). https://doi.org/10.1016/S0378-3812(98)00448-8
  4. V. Gil-Hernandez, P. Garaia-Gimenez, S. Otin, M. Artal, and I. Velasco, J. Chem. Thermodynamics, 37, 7 (2005). https://doi.org/10.1016/j.jct.2004.07.012
  5. J. A. Dean, LANGE'S Handbook of CHEMISTRY, 5th ed., McGraw-Hill, INC (1997).
  6. B. Ramsauer, R. Neueder, and W. Kunz, Fluid Phase Equilibria, 272, 84 (2008). https://doi.org/10.1016/j.fluid.2008.06.022
  7. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 5th ed., McGraw-Hill, INC (1996).
  8. H.-D. Kim, I.-C. Hwang, and S.-J. Park, Fluid Phase Equilib., 274, 73 (2008). https://doi.org/10.1016/j.fluid.2008.09.005
  9. A. Villares. M. Haro, S. Martin, M. C. Lopez, and C. Lafuente, Fluid Phase Equilib., 225, 77 (2004). https://doi.org/10.1016/j.fluid.2004.07.020
  10. P. Gnanakumari, P. Venkatesu, C. T. Hsieh, M. V. Prabhakara Rao, M. J. Lee, and H. M. Lin, J. Chem. Thermodynamics, 41, 184-188 (2009). https://doi.org/10.1016/j.jct.2008.09.021
  11. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1987).
  12. G. Ovejero, M. Dolores Romero, E. Diez, T. Lopes, and I. Diaz, J. Chem. Thermodynamics, 40, 1617 (2008). https://doi.org/10.1016/j.jct.2008.06.005
  13. I. Ashour and S. I. Abu-Eishah, J. Chem. Eng. Data, 54, 1717 (2006).
  14. O. Redlich and A. T. Kister, Ind. Eng. Chem., 40, 345 (1948). https://doi.org/10.1021/ie50458a036
  15. S. J. Park, K. J. Han, and Y. Y. Choi, J. Korean Ind. Eng. Chem., 15, 791 (2004).
  16. L. Lepori and E. Mateeoli, Fluid Phase Equilib., 134, 113 (1997). https://doi.org/10.1016/S0378-3812(97)00061-7
  17. N. A. Darwish and A. A. Al-Khateib, Fluid Phase Equilib., 132, 215 (1997). https://doi.org/10.1016/S0378-3812(97)00006-X