Biological Removal of Nitrogen Oxides from Combustion Flue Gases

연소배가스 중 질소산화물(NOx) 제거를 위한 생물학적 기술

  • Lee, Ki-Say (Department of Environmental Engineering and Biotechnology, Myongji University)
  • 이기세 (명지대학교 환경생명공학과)
  • Received : 2010.05.18
  • Published : 2010.06.10

Abstract

Nitrogen oxides (NOx) in combustion flue gas are currently mitigated by chemical processes such as catalytic reduction, absorption and adsorption. However, development of environmentally sustainable biological processes is necessary in the near future. In this paper, the up-to-dated R&D trend of biological methodologies regarding NOx removal was reviewed, and their advantages and disadvantages were discussed. The principles and applications of bacterial system including nitrification and denitrification and photosynthetic microalgae system were compared. In order to enhance biological treatment rate and performance, the insoluble nitric oxide (NO) should be first absorbed using a proper solubilization agent, and then microbial degradation or fixation is to be followed. The use of microalgal system has a good prospect because it can fix $CO_2$ and NOx simultaneously and requires no additional carbon for energy source.

연소배가스에 존재하는 질소산화물의 제거를 위해서는 촉매 환원, 흡수, 흡착 등 화학적 기술이 적용되고 있는데, 장기적으로는 환경친화적이고 에너지 소모가 적은 생물학적 공정의 개발 및 이용이 필요하다. 본 논문에서는 연소 배가스에 존재하는 질소산화물을 제거하기 위한 생물학적 공정의 기술동향을 살펴보고 각각의 장단점을 고찰하였다. 질산화와 탈질 기작을 이용하는 박테리아 시스템과 광합성 미세조류를 이용하는 시스템으로 구분하여 기술의 원리와 현재의 기술 수준을 논하였다. 두 경우 모두 처리속도를 높이기 위해서는 불용성의 일산화질소를 일단 적절한 흡수제에 고농도로 포집시킨 후 미생물에 의하여 분해 또는 고정하는 방향이 바람직하며, 배가스 중 $CO_2$와 NOx를 동시에 고정이 가능하고 별도의 탄소원이 요구되지 않는 미세조류의 활용이 기대된다.

Keywords

References

  1. NIER, National Air Pollutants Emission 2007, 11-1480523-000198- 10, Ministry of Environment, Korea (2009).
  2. B. Ramachandran, R. G. Herman, S. Choi, H. G. Stenger, C. E. Lyman, and J. W. Sale, Catal. Today, 55, 281 (2000). https://doi.org/10.1016/S0920-5861(99)00252-7
  3. A. Fritz and V. Pitchon, Appl. Cat., B13, 1 (1997).
  4. H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  5. T. Kurvits and T. Marta, Environ. Pollut., 102, 187 (1998). https://doi.org/10.1016/S0269-7491(98)80032-8
  6. Y. Jin, M. C. Veiga, and C. Kennes, J. Chem. Tech. Biotechnol., 80, 483 (2005). https://doi.org/10.1002/jctb.1260
  7. M. Bradford, R. Grover, and P. Paul, Chem. Eng. Prog., 98, 42 (2002).
  8. J. O. L. Wendt, W. P. Linak, and P. W. Srivastava, AIChE J., 47, 2603 (2001). https://doi.org/10.1002/aic.690471123
  9. M. Bradford, R. Grover, and P. Paul, Chem. Eng. Prog., 98, 38 (2002).
  10. M. H. Thiemens, H. Mark, and W. C. Trogler, Science, 251, 932 (1991). https://doi.org/10.1126/science.251.4996.932
  11. C. Kroeze, Sci. Total Environ., 143, 193 (1994). https://doi.org/10.1016/0048-9697(94)90457-X
  12. A. Shimizu, K. Tanaka, and M. Fujimori, Chemosphere GCS, 2, 425 (2000).
  13. B. B. Sundaresan, C. I. Harding, F. P. May, and E. R. Hendrickson, Environ. Sci. Technol., 1, 151 (1967). https://doi.org/10.1021/es60002a001
  14. Z. Guo, Y. Xie, I. Hong, and J. Kim, Energy Conv. Manag., 42, 2005 (2001). https://doi.org/10.1016/S0196-8904(01)00058-9
  15. N. W. Cani and I. O. Y. Lin, Catal. Today, 63, 133 (2000). https://doi.org/10.1016/S0920-5861(00)00453-3
  16. C. B. Wang, T. F. Yeh, and H. K. Lin, J. Hazard. Mater., 92, 241 (2002). https://doi.org/10.1016/S0304-3894(01)00386-7
  17. H. Chu, T. W. Chien, and B. W. Twu, J. Hazard. Mater., 84, 241 (2001). https://doi.org/10.1016/S0304-3894(01)00215-1
  18. E. Tzimas, A. Mercier, C. C. Cormos, and S. D. Peteves, Energy Pol., 35, 3991 (2007). https://doi.org/10.1016/j.enpol.2007.01.027
  19. B. R. Deshwal, D. S. Jin, S. H. Lee, S. H. Moon, J. H. Jung, and H. K. Lee, J. Hazard. Mat., 150, 649 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.016
  20. Y. Hishinuma, R. Kaji, H. Akimoto, F. Katajima, T. Mori, T. Kamo, Y. Arikawa, and S. Nozawa, Bul. Chem. Soc. Jap., 52, 2863 (1979). https://doi.org/10.1246/bcsj.52.2863
  21. V. Zang, M. Kotowski, and R. van Eldik, Inorg. Chem., 27, 3279 (1988). https://doi.org/10.1021/ic00292a007
  22. V. Zang, M. Kotowski, and R. van Eldik, Inorg. Chem., 29, 1705 (1990). https://doi.org/10.1021/ic00334a023
  23. J. F. Demmink, I. C. F. van Gils, and A. A. C. M. Beenackers, Ind. Eng. Chem. Res., 36, 4914 (1997). https://doi.org/10.1021/ie9702800
  24. M. S. Chou and J. H. Lin, J. Air Waste Manage. Assoc., 50, 502 (2000). https://doi.org/10.1080/10473289.2000.10464033
  25. M. Konneke, A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury, and D. A. Stahl, Nature, 437, 543 (2005). https://doi.org/10.1038/nature03911
  26. C. A. Francis, J. M. Beman, and M. M. M. Kuypers, ISME J., 1, 19 (2007). https://doi.org/10.1038/ismej.2007.8
  27. T. Lukow and H. Diekmann, Biotechnol. Lett., 19, 1157 (1997). https://doi.org/10.1023/A:1018465232392
  28. M. Yani, M. Hirai, and M. Shoda, Environ. Technol., 21, 1199 (2000). https://doi.org/10.1080/09593332108618039
  29. N. J. Kim, M. Hirai, and M. Shoda, J. Hazard. Mater., 72, 77 (2000). https://doi.org/10.1016/S0304-3894(99)00160-0
  30. K. Okuno, M. Hirai, M. Sugiyama, K. Haruta, and M. Shoda, Biotechnol. Lett., 22, 77 (2000). https://doi.org/10.1023/A:1005624815889
  31. K. N. Min, S. J. Ergas, and J. M. Harrison, Environ. Eng. Sci., 19, 575 (2002). https://doi.org/10.1089/109287502320963517
  32. I. Kalkowski and R. Conrad, FEMS Microbiol. Lett., 82, 107 (1991). https://doi.org/10.1111/j.1574-6968.1991.tb04848.x
  33. R. Shanmugasundram, C. M. Lee, and K. L. Sublette, Appl. Biochem. Biotechnol., 39, 727 (1993). https://doi.org/10.1007/BF02919031
  34. R. W. Ye, B. A. Averill, and J. M. Tiedje, Appl. Environ. Microbiol., 60, 1053 (1994).
  35. W. G. Zumft, Microbiol. Mol. Biol. Rev., 61, 533 (1997).
  36. J. R. Woertz, K. A. Kinney, and P. J. Szaniszlo, J. Air Waste Manage. Assoc., 51, 895 (2001). https://doi.org/10.1080/10473289.2001.10464321
  37. K. H. Lee and K. L. Sublette, Appl. Biochem. Biotechnol., 24, 441 (1990). https://doi.org/10.1007/BF02920268
  38. K. H. Lee and K. L. Sublette, Appl. Biochem. Biotechnol., 28, 623 (1991). https://doi.org/10.1007/BF02922637
  39. B. N. Dasu, V. Deshmane, R. Shanmugasundram, C. M. Lee, and K. L. Sublette, Fuel, 72, 1705 (1993). https://doi.org/10.1016/0016-2361(93)90359-A
  40. W. T. Potter, J. Cho, and K. L. Sublette, Fuel Process. Technol., 40, 355 (1994). https://doi.org/10.1016/0378-3820(94)90158-9
  41. W. T. Potter, U. Le, S. Ronda, J. G. Cho, R. Shanmugasundram, A. Chirkis, and K. L. Sublette, Appl. Biochem. Biotechnol., 51, 771 (1995). https://doi.org/10.1007/BF02933477
  42. P. Arvidsson, K. Nilsson, H. Hakanson, and B. Mattiasson, Appl. Microbiol. Biotechnol., 49, 677 (1998). https://doi.org/10.1007/s002530051231
  43. B. D. Lee, W. A. Apel, and W. A. Smith, Environ. Prog., 20, 157 (2001). https://doi.org/10.1002/ep.670200311
  44. K. T. Klasson and B. H. Davison, Appl. Biochem. Biotechnol., 91, 205 (2001). https://doi.org/10.1385/ABAB:91-93:1-9:205
  45. W. P. Flanagan, W. A. Apel, J. M. Barnes, and B. D. Lee, Fuel, 81, 1953 (2002). https://doi.org/10.1016/S0016-2361(02)00130-8
  46. H. Matsumoto, A. Hamasaki, N. Sioji, and Y. Ikuta, J. Chem. Eng. Jap., 30, 620 (1997). https://doi.org/10.1252/jcej.30.620
  47. J. H. Lee, J. S. Lee, C. S. Shin, S. C. Park, and S. W. Kim, J. Microbiol. Biotechnol., 10, 338 (2000).
  48. K. Miyamoto, H. Nagase, and K. Hirata, Photosynthetic Microorganisms in Environmental Biotechnology, ed. H. Kojima and Y. K. Lee, 87, Springer-Verlag (2001).
  49. J. S. Lee, D. K. Kim, J. P. Lee, S. H. Park, J. H. Koh, and S. J. Ohh, J. Microbiol. Biotechnol., 11, 772 (2001).
  50. Y. Chisti, TIB, 26, 126 (2007).
  51. S. Hossain, A. Salleh, A. N. Boyce, P. Chowdhury, and M. Naqiuddin, Am. J. Biochem. Biotechnol., 4, 250 (2008). https://doi.org/10.3844/ajbbsp.2008.250.254
  52. M. Negoro, N. Shioji, K. Mitamoto, and Y. Miura, Appl. Biochem. Biotechnol., 28, 877 (1991). https://doi.org/10.1007/BF02922657
  53. K. I. Yoshihara, H. Nagase, K. Eguchi, K. Hirata, and K. Miyamoto, J. Ferment. Bioeng., 82, 351 (1996). https://doi.org/10.1016/0922-338X(96)89149-5
  54. H. Nagase, K. Yoshihara, K. Eguchi, Y. Yokota, R. Matsui, K. Hirata, and K. Miyamoto, J. Ferment. Bioeng., 83, 461 (1997). https://doi.org/10.1016/S0922-338X(97)83001-2
  55. H. Nagase, K. Eguchi, K. Yoshihara, K. Hirata, and K. Miyamoto, J. Ferment. Bioeng., 86, 421 (1998). https://doi.org/10.1016/S0922-338X(99)89018-7
  56. H. Nagase, K. Yoshihara, K. Eguchi, Y. Okamoto, S. Murasaki, R. Yamashita, K. Hirata, and K. Miyamoto, Biochem. Eng. J., 7, 241 (2001). https://doi.org/10.1016/S1369-703X(00)00122-4
  57. J. Doucha, F. Straka, and K. Livansky, J. Appl. Phycol., 17, 403 (2005). https://doi.org/10.1007/s10811-005-8701-7
  58. H. F. Jin, D. Santiago, J. Park, and K. Lee, Biotechnol. Bioprocess Eng., 13, 48 (2008). https://doi.org/10.1007/s12257-007-0164-z
  59. D. Santiago, H. F. Jin, and K. Lee, Process Biochem., doi:10.1016/j.procbio. 2010. 04. 003 (2010).
  60. J. Hofele, D. van Velzen, H. Langenkamp, and K. Schaber, Chem. Eng. Proc., 35, 295 (1996). https://doi.org/10.1016/0255-2701(95)04134-6
  61. Y. Shi, D. Littlejohn, and S. G. Chang, Environ. Sci. Technol., 30, 3371 (1996). https://doi.org/10.1021/es960268j
  62. Y. Shi, H. Wang, and S. G. Chang, Environ. Prog., 16, 201 (1997).
  63. B. Cetinkaya, R. K. Sahlin, W. R. Abma, H. Dijkman, S. F. Meyer, and S. M. Kampeter, Hydrocarb. Proc., 79, 55 (2000).
  64. R. Kumaraswamy, G. Muyzer, J. G. Kuenen, and M. C. M. van Loosdrecht, Water Sci. Technol., 50, 9 (2004).
  65. P. van der Maas, T. van de Sandt, B. Klapwijk, and P. Lens, Biotechnol. Prog., 19, 1323 (2003).
  66. P. van der Maas, L. Harmsen, S. Weelink, B. Klapwijk, and P. Lens, J. Chem. Tech. Biotechnol., 79, 835 (2004). https://doi.org/10.1002/jctb.1057
  67. R. Kumaraswamy, U. van Dongen, J. G. Kuenen, W. Abma, M. C. M. van Loosdrecht, and G. Muyzer, Appl. Environ. Microbiol., 71, 6345 (2005). https://doi.org/10.1128/AEM.71.10.6345-6352.2005
  68. G. H. Jing, W. Li, Y. Shi, B. Y. Ma, and T. E. Tan, J. Zhejiang Univ. Sci., 5, 432 (2004). https://doi.org/10.1631/jzus.2004.0432
  69. P. van der Maas, P. van den Bosch, B. Klapwijk, and P. Lens, Biotechnol. Bioeng., 90, 433 (2005). https://doi.org/10.1002/bit.20420
  70. P. van der Maas, P. van den Brink, S. Utomo, B. Klapwijk, and P. Lens, Biotechnol. Bioeng., 94, 576 (2006).
  71. D. E. O. Santiago, MS Thesis, Myongji University, Yongin, Korea (2010).
  72. H. B. Lockhart and R. V. Blakeley, Environ. Sci. Technol., 9, 1035 (1975). https://doi.org/10.1021/es60110a009
  73. S. Metsarinne, P. Rantanen, R. Aksela, and T. Tuhkanen, Chemosphere, 55, 379 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.062
  74. K. Lee, 41th KSIEC Meeting, 1LE-3, Busan, Korea (2010).