초록
최근 다양하게 제시되고 있는 확률론적 방법에 의한 산사태 예측기법의 경우 전문적 지식을 기반으로 조사 및 분석이 이루어질 경우에만 분석결과의 신뢰성을 확보할 수 있다. 그러나 재해 발생상황에서는 통계분석을 통한 산사태 예측의 전문가뿐만 아니라 공무원, 지질공학자 등 통계적 전문지식을 갖지 않은 재해분야 담당자도 신뢰성 있고 간편한 방법으로 산사태 취약성을 해석할 수 있어야 한다. 따라서 본 논문은 전문가는 물론 비전문가도 쉽게 의미를 이해하고 활용할 수 있으면서도 정확한 분석을 통한 통계적 접근으로 신뢰성 높은 산사태 취약성 평가표를 개발하여 제안하고자 하였다. 이를 위해 기존에 국내에서 산사태가 집중적으로 발생한 지역의 지질, 지형, 토질자료를 토대로 산사태 정준상관분석을 통한 수량화 기법을 이용하여 산사태 취약성 평가표를 개발하였다. 산사태의 현장자료와 실내시험자료를 바탕으로 통계분석을 실시하고, 그 결과를 토대로 영향인자 선정 및 인자별 급간 값을 설정한 것이다. 수량화 분석결과 산사태를 발생시키는 여러 인자 중 사면경사가 가장 큰 중요도를 가지며, 고도, 투수계수, 간극율, 암질, 건조밀도의 순서로 큰 영향을 미치는 것으로 나타났다. 각 평가항목별로 결정된 점수를 기준으로 평가항목 각각의 세부등급에 대한 점수를 할당하여 산사태재해 취약성 평가표를 개발하였다. 산사태재해 취약성 평가표를 이용하여 평가자는 평가대상 지점에 대해 각 평가항목별 해당 속성, 즉 세부등급을 선택하고, 선택된 각 속성별 평가점수를 더하면 산사태 취약성을 점수로 신속하게 파악할 수 있다. 또한, 이 결과를 토대로 GIS 기법을 이용한 산사태 예측지도 또는 취약성지도 등을 작성하여 활용할 수 있다.
Probabilistic prediction methods of landslides which have been developed in recent can be reliable with premise of detailed survey and analysis based on deep and special knowledge. However, landslide susceptibility should also be analyzed with some reliable and simple methods by various people such as government officials and engineering geologists who do not have deep statistical knowledge at the moment of hazards. Therefore, this study suggests an evaluation chart of landslide susceptibility with high reliability drawn by accurate statistical approaches, which the chart can be understood easily and utilized for both specialists and non-specialists. The evaluation chart was developed by a quantification method based on canonical correlation analysis using the data of geology, topography, and soil property of landslides in Korea. This study analyzed field data and laboratory test results and determined influential factors and rating values of each factor. The quantification analysis result shows that slope angle has the highest significance among the factors and elevation, permeability coefficient, porosity, lithology, and dry density are important in descending order. Based on the score assigned to each evaluation factor, an evaluation chart of landslide susceptibility was developed with rating values in each class of a factor. It is possible for an analyst to identify susceptibility degree of a landslide by checking each property of an evaluation factor and calculating sum of the rating values. This result can also be used to draw landslide susceptibility maps based on GIS techniques.