Study for the Stabilization of Arsenic in the Farmland Soil by Using Steel Making Slag and Limestone

제강슬래그와 석회석을 이용한 비소오염 농경지 토양 안정화 연구

  • Lee, Min-Hee (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Jeon, Ji-Hye (Center for Atmospheric Sciences & Earthquake Research)
  • 이민희 (부경대학교 지구환경과학과) ;
  • 전지혜 ((재)기상지진기술개발사업단)
  • Received : 2010.06.23
  • Accepted : 2010.08.05
  • Published : 2010.08.28

Abstract

The stabilization process using limestone ($CaCO_3$) and steel making slag as the immobilization amendments was investigated for As contaminated farmland soils around Chonam abandoned mine, Korea. Batch and continuous column experiments were performed to quantify As-immobilization efficiency in soil and the analyses using XRD and SEM/EDS for secondary minerals precipitated in soil were also conducted to understand the mechanism of Asimmobilization by the amendments. For the batch experiment, with 3% of limestone and steel making slag, leaching concentration of As from the contaminated soil decreased by 62% and 52% respectively, compared to that without the amendment. When the mixed amendment (2% of limestone and 1% of steel making slag) was used, As concentration in the effluent solution decreased by 72%, showing that the mixed of limestone and steel making slag has a great capability to immobilize As in the soil. For the continuous column experiments without the amendment, As concentration from the effluent of the column ranged from 50 to $80\;{\mu}g/L$. However, with 2% limestone and 1% steel making slag, more than 80% diminution of As leaching concentration occurred within 1 year and maintained mostly below $10\;{\mu}g/L$. Results from XRD and SEM/EDS analysis for the secondary minerals created from the reaction of the amendments with $As^{+3}$ (arsenite) investigated that portlandite ($Ca(OH)_2$), calcium-arsenite (Ca-As-O) and calcite ($CaCO_3$) were main secondary minerals and the distinct As peaks in the EDS spectra of the secondary minerals can be observed. These findings suggest that the co-precipitation might be the major mechanisms to immobilize As in the soil medium with limestone and steel making slag.

제강슬래그와 석회석을 이용하여 비소로 오염된 농경지 토양으로부터 비소 용출을 안정화 시키는 배치 및 대형 칼럼 실험을 실시하여, 제강슬래그와 석회석이 토양 내 비소안정화에 효과적으로 사용될 수 있음을 입증하였다. 토양의 비소 농도가 토양오염우려기준 농도의 약 2배(12.3 mg/kg)인 전남 광양 주변 초남광산 주변에 위치한 밭토양을 대상으로 안정화 실험을 실시하였으며, 안정화제로 사용한 제강슬래그 이화학분석 결과 비소 공침 효과가 높은 Ca, Fe, Al, Mg 산화물 함량이 70% 이상을 차지하는 것으로 나타났다. 안정화제 종류별 비소 용출 저감 효과를 규명하고 최적 안정화제 주입 비율을 선정하기위한 배치실험을 실시하였다. 오염토양 대비 석회석(또는 제강슬래그)의 첨가 비율을 1, 2, 3% 로 설정하여 비소 용출 저감 효율을 규명하는 실험을 실시하였으며, 석회석과 제강슬래그를 다양한 비 율로 혼합한 혼합안정화제도 실험에 사용하였다. 배치실험 결과 오염토양으로부터 용출되는 비소 농도는 1% 와 3% 석회석 첨가에 의해 안정화제를 첨가하지 않은 오염 토양의 비소 용출 농도 대비 각각 51%, 62% 감소하였다. 1%와 3% 제강슬래그를 오염토양에 첨가한 경우 비소 용출 농도는 각각 46%, 52% 감소하였다. 석회석 1%+제강슬래그 1%, 석회석 1%+제강슬래그 2%, 석회석 2%+제강슬래그 1%를 첨가하여 실험한 경우, 비소 용출농도는 각각 63%, 62%, 72% 감소하였다. 비소 용출 농도 및 용출 누적량을 계산하여 안정화공법에 의한 비소 오염 토양의 장기적 안정화를 예측하고자 인공강우에 의한 연속 용출 실험을 실시하였다. 배수시스템 및 격자형의 하부 스크린이 설치된 직경 15 cm, 높이 100 cm 의 대형 아크릴 칼럼을 제작하였으며, 용출시험 결과로부터 비소 용출 저감 효과가 뛰어난 석회석 2%+제강슬래그 1%를 혼합하여 연속 칼럼 실험의 안정화제로 사용하였다. 안정화제를 첨가하지 않은 칼럼의 경우 인공강우에 의한 비소 용출 농도는 시간이 지남에 따라 약 $50-80\;{\mu}g/L$ 를 유지하였다. 2% 석회석과 1% 제강슬래그를 오염토양과 혼합한 칼럼의 경우 비소 용출 농도는 1년 이내에 80% 이상 감소하였으며, 지하수 생활용수기준치인 $50\;{\mu}g/L$ 보다 낮게 나타나 오염토양으로부터의 비소의 안정화 효과는 매우 높은 것으로 나타났다. 석회석과 제강슬래그의 비소 안정화 기작을 규명하기위해 석회석과 제강슬래그를 3가비소(arsenite) 용액과 혼합하여 반응시 켜 공침된 광물 결정에 대하여 SEM/EDS 분석을 실시한 결과 방해석($CaCO_3$) 이외에 포틀랜다이트(portlandite)와 칼슘-비소 산화물(Ca-As-O 계열)이 추가로 생성된 것으로 나타났으며, 이러한 추가 생성 광물에 의한 비소 포획이 주요 비소 고정 기작인 것으로 나타났다.

Keywords

References

  1. Alexandratos, V., Elzinga, E. and Reeder, R. (2007) Arsenate uptake by calcite: Macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim. Cosmochim, v.71, p.4172-4187. https://doi.org/10.1016/j.gca.2007.06.055
  2. Bothe, JV. and Brown, PW. (1999) Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol., v.33, p.3806-3811. https://doi.org/10.1021/es980998m
  3. Dutre, V. and Vandecasteele, C. (1995) Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate. Waste Manage, v.15, p.55-62. https://doi.org/10.1016/0956-053X(95)00002-H
  4. Kim, H.S. and Park, G.S. (2009) Beneficial reuse of steelmaking slag for restoration of coastal ecosystem. Korean geo-Environ Soc., v.10, p.57-66.
  5. KIGAM(Korea Institute of Geoscience and Mineral Resources). (2006) Assessment of heavy metal hazards in mineralization zones and natural attenuation technologies of heavy metal. Final Report/OAAsoo4030-2006(3). p.45-47.
  6. Lee, M., Lee, J., Cha, J. and Lee, J.M. (2004) Remediation design using soil washing and soil improvement method for As contaminated soils and stream deposits around and abandoned mine. Econ. Environ. Geol., v.37, p.121-131.
  7. Lee, M,, Lee, Y., Yang, M., Kim, J. and Wang, S. (2008) Lime(CaO) and limestone($CaCO_{3}$) as the stabilization process for contaminated farmland soil around abandoned mine, Korea. Econ. Environ. Geol., v.41, p.201-210.
  8. Lee, W.C., Cho, H.G., Kim, Y.H. and Kim, S.O. (2009) A mineralogical study on the arsenic behavior in the tailings of Nakdong mine. J. Miner. Soc. Korea. v.22, p.359-370.
  9. Lee, W.C., Jeong, J.O., Kim, J.Y. and Kim, S.O. (2010) Characterization of arsenic immobilization in the Myungbong mine tailing. Econ. Environ. Geol., v.43, p.137-148.
  10. MAF(Ministry for Agriculture and Fisheries). (1983) Farmland Improvement Design Standards.
  11. Moon, D.H., Dermatas, D. and Menounou N. (2004) Arsenic immoblization by calcium-arsenic precipitates in lime treated soils. Sci. Total Environ., v.330, p.171-185. https://doi.org/10.1016/j.scitotenv.2004.03.016
  12. Moon, D.H., Wazne M., Yoon, I.H. and Grubb, G. (2008) Assesment of cement kiln dust(CKD) for stabilization/solidification(S/S) of arsenic contaminated soils. J. Hazard. Mater., v.159, p.512-518. https://doi.org/10.1016/j.jhazmat.2008.02.069
  13. Navarro, M.C., Perez-Sirvent, C., Martinez-Sanchez, M.J., Vidal, J., Tovar, P.J. and Bech, J. (2008) Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor., v.96, p.183-193. https://doi.org/10.1016/j.gexplo.2007.04.011
  14. Oeters, F. (1999) Metallurgie der Staulherstellung, translated by Lee, C.H. and Lee, H.G., The Korea Economic Daily & Business Publications Inc., p . 19-151.
  15. Palfy, P., Vircikova, E. and Molnar, L. (1999) Processing of arsenic waste by precipitation and solidification. Waste Management, v.19, p.55-59. https://doi.org/10.1016/S0956-053X(99)00014-8
  16. Park, M.E., Sung, J.Y., Lee, M, Lee, P.K. and Kim, M.C. (2005) Effects of pH-Eh on natural attenuation of soil contaminated by arsenic in the Dalchen mine area, Ulsan, Korea. Econ. Environ. Geol., v.38, p.513-523.
  17. Rodriguez. L., Ruiz, E., Alonso-Azcarate, J. and Rincon, J. (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J. Environ. Manage., v.90, p.1106-1116. https://doi.org/10.1016/j.jenvman.2008.04.007
  18. Roman-Ross, G., Cuello, G.J., Turrilas, X., Fernandez-Martinez, A. and Charlet, L. (2006) Arsenite sorption and co-precipitation with calcite. Chemical geology, v.233, p.328-336. https://doi.org/10.1016/j.chemgeo.2006.04.007
  19. Singh, T.S. and Pant, K.K. (2006) Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater., v.131, p.29-36. https://doi.org/10.1016/j.jhazmat.2005.06.046
  20. So, H., Postma, D., Jakobsen, R. and Larsen F. (2008) Sorption and desorption of arsenate and arsenite on calcite. Geochim. Cosmochim. Acta, v.72, p.5871-5884. https://doi.org/10.1016/j.gca.2008.09.023
  21. Son, J.H., Roh, H., Lee, S.Y., Kim, G.H., Park, J.K., Yang, J.K. and Chang, Y.Y. (2009) Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and CaO. J. Soil & Groundwater Env., v.14, p.78-86.
  22. Wang, S. and Mulligan, C.N. (2009) Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere, v.74, p.274-279. https://doi.org/10.1016/j.chemosphere.2008.09.040
  23. Welch, A.H., Lico, M.S., Hughes, J.L. (1988) Arsenic in ground water of the western United States. Ground Water, v.26, p.333-347. https://doi.org/10.1111/j.1745-6584.1988.tb00397.x