새로운 그린에너지 리소스 - 미생물연료전지

  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과)
  • 발행 : 2010.08.28

초록

키워드

참고문헌

  1. Kim BH, Kim HJ, Hyun MS, Park DH. 1999(a). Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefacience. J. Microbiol. Biotechnol. 9:127-131.
  2. Kim HJ, Hyun MS, Chang IS, Kim BH. 1999(b) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9, 365-367.
  3. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Kim BH. 2004. Continuous determination of biochemical oxygen demand using a microbial fuel cell type novel biosensor, Biosens. Bioelectron. 19, 607-613. https://doi.org/10.1016/S0956-5663(03)00272-0
  4. Jang, J.K.; Pham,T.H.; Chang, I.S.; Kang, K.H.;Moon, H.; Cho, K.S.; Kim, B.H. 2004 Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process biochemistry, 39, 1007-1012. https://doi.org/10.1016/S0032-9592(03)00203-6
  5. Jang, J.K.; Chang, I.S.; Moon H.; Kang, K.H.; Kim, B.H. 2007 Nitrilotriacetic acid degradation under microbial fuel cell environment. Biotech.Bioeng., 95, 772-774.
  6. Liu H, Ramnarayanan R, Logan BE. 2004. Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science and Technology, 38(7), 2281-2285. https://doi.org/10.1021/es034923g
  7. Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol., 7(5):375-381. https://doi.org/10.1038/nrmicro2113
  8. Catal T, Bermek H, Liu H. 2009. Removal of selenite from wastewater using microbial fuel cells. Biotechnology letters, 31(8), 1211-1216. https://doi.org/10.1007/s10529-009-9990-8
  9. Zhao F, Rahunen N, Varcoe JR, Chandra A, Avignone-rossa C, Thumser AE, Slade RCT. 2008. Activated Carbon Cloth as Anode for Sulfate Removal in a Microbial Fuel Cell. Environ. Sci. Technol. 42, 4971-4976 https://doi.org/10.1021/es8003766
  10. Cheng S. and Logan BE. 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Elec. Comm. 9, 492-496. https://doi.org/10.1016/j.elecom.2006.10.023
  11. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii H, Logan B, Nealson KH, Fredrickson JK. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS, 103, 11358-11363. https://doi.org/10.1073/pnas.0604517103
  12. Lovley DR. 2006. Microbial energizers: Fuel cells that keep on going. Microbe 1(7):323-329.
  13. Fan Y, Hu H, Liu H. 2007. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources 171, 348-354. https://doi.org/10.1016/j.jpowsour.2007.06.220
  14. Yuzvinsky TD and Nealson KH. 2010. Bacterial nanowires and electricity generation in microbial fuel cell. The electrochemical society 217th ECS meeting.