Sample thread based real-time BRDF rendering

샘플 쓰레드 기반 실시간 BRDF 렌더링

  • Received : 2010.04.29
  • Accepted : 2010.06.23
  • Published : 2010.09.01

Abstract

In this paper, we propose a novel noiseless method of BRDF rendering on a GPU in real-time. Illumination at a surface point is formulated as an integral of BRDF producted with incident radiance over the hemi-sphere domain. The most popular method to compute the integral is the Monte Carlo method, which needs a large number of samples to achieve good image quality. But, it leads to increase of rendering time. Otherwise, a small number of sample points cause serious image noise. The main contribution of our work is a new importance sampling scheme producing a set of incoming ray samples varying continuously with respect to the eye ray. An incoming ray is importance-based sampled at different latitude angles of the eye ray, and then the ray samples are linearly connected to form a curve, called a thread. These threads give continuously moving incident rays for eye ray change, so they do not make image noise. Since even a small number of threads can achieve a plausible quality and also can be precomputed before rendering, they enable real-time BRDF rendering on the GPU.

본 논문에서는 BRDF를 이용한 재질 렌더링에서 적은 수의 샘플을 사용하면서 화소(pixel) 노이즈가 없는 렌더링 방법을 제안한다. BRDF를 이용한 재질 렌더링에서 이미지 품질을 결정하는데 가장 중요한 요소 중 한가지는 모든 방향으로부터 들어오는 빛의 양을 어떻게 적분할 것인가 이다. 일반적으로 이러한 적분에는 빛의 양을 샘플값들의 합으로 근사시키는 Monte Carlo 기법이 널리 사용된다. 이 방법은 샘플링 수를 늘릴수록 실제 물체의 재질에 가깝게 렌더링이 가능하지만 많은 렌더링 연산이 필요하고, 반대로 샘플링 수를 줄이면 심각한 화소 노이즈가 발생한다. 적은 수의 샘플을 사용하면서도 화소 노이즈가 없는 렌더링을 하기 위해서, 본 논문에서는 BRDF데이터에서 렌더링 결과에 미치는 영향을 고려하여 중요한 부분을 더욱 많이 샘플링 하는 중요 샘플링 기법을 응용하며, 시점 방향에 따른 샘플들을 위치 변화를 최소화한 후, 이 인접한 시점 방향의 샘플들을 엮어서 만든 샘플 쓰레드를 제안한다. 이 샘플 쓰레드는 반사광에 따라 변화하는 샘플들의 자취를 연결한 데이터로, 이는 시점 방향에 따라 연속적으로 변하는 샘플 집합을 갖는다. 따라서 샘플 기반의 렌더링이 기본적으로 가지고 있는 화소 노이즈 현상이 발생하지 않는다. 따라서 적은 수의 샘플 쓰레드로도 노이즈가 없는 만족할만한 렌더링 결과를 얻을 수 있으며, 샘플 쓰레드를 BRDF에 따라 미리 계산해 놓을 수 있어 그래픽 하드웨어를 통한 실시간 BRDF 렌더링이 가능하다.

Keywords

References

  1. B. T. Phong, "Illumination for computer generated pictures," Commun. ACM, vol. 18, no. 6, pp. 311-317, 1975. https://doi.org/10.1145/360825.360839
  2. J. F. Blinn, "Models of light reflection for computer synthe-sized pictures," SIGGRAPH Comput. Graph., vol. 11, no. 2, pp. 192-198, 1977. https://doi.org/10.1145/965141.563893
  3. R. L. Cook and K. E. Torrance, "A reflectance model for computer graphics," ACM Trans. Graph., vol. 1, no. 1, pp. 7-24, 1982.
  4. X. D. He, K. E, Torrance, F. X. Sillion, and D. P. Greenberg, "A comprehensive physical model for light reflection," SIGGRAPH Computer. Graph., vol. 25, no. 4, pp. 175-186, 1991. https://doi.org/10.1145/127719.122738
  5. E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg, "Non-linear approximation of reflectance function," in SIGGRAPH '97 : Proceedings of the 24th annual conference on Computer graphics and interactive techniques. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997, pp. 117-126.
  6. G. J. Ward, "Measuring and modeling anisotropic reflection," SIGGRAPH Computer. Graph., vol. 26, no. 2, pp. 265-272, 1992. https://doi.org/10.1145/142920.134078
  7. E. Veach, "Robust monte carlo methods for light transport simulation," Ph.D. dissertation, Stanford, CA, USA, 1998, adviser-Guibas, Leonidas J.
  8. M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Implementation. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.
  9. J. Lawrence, R. Ramamoorthi, and S. Rusinkiewicz, "Efficient brdf importance sampling using a factored representation," in ACM SIGGRAPH, 2004, pp. 496-505. [Online]. Available: http://graphics.cs.berkeley.edu/papers/Lawrence-EBI-2004-07/
  10. P. Shirley, C. Wang, and K. Zimmerman, "Monte carlo techniques for direct lighting calculation," ACM Trans. Grapgh., vol. 15, no. 1, pp. 1-36, 1996. https://doi.org/10.1145/226150.226151
  11. S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen, "Structured importance sampling of environment maps," ACM Trans. Graph., vol. 22. no. 3, pp. 605-612, 2003. https://doi.org/10.1145/882262.882314
  12. P. Clarberg, W. Jarosz, T. Akenine-Moller, and H. W. Jensen, "Wavlet imprtance sampling: Efficiently evaluating products of complex functions," in Proceedings of ACM SIGGRAPH 2005, 2005.
  13. D. Burke, A. Ghosh, and W. Heidrich, "Bidirectional importance sampling for direct illumination," in Rendering Techniques 2005: 16th Eurographics Workshop on Rendering, June 2005, pp. 147-156.
  14. J. F. Talbot, D. Cline, and P. K. Egbert, "Importance resampling for global illumination," in Rendering Techniques 2005 Eurographics Symposium on Rendering, K. Bala and P. dutre, Eds. Aire-la-Ville, Switzerland: Eurographics Association, 2005, pp. 139-146.
  15. J. Kautz and M. D. McCool, "Interactive rendering with arbitrary brdfs using separable approximations," in IN EURO-GRAPHICS RENDERING WORKSHOP, 1999, pp. 281-292.
  16. M. D. McCool, J. Ang, and A. Ahmad, "Homomorphic factorization of brdfs for high-performance rendering," in SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. New York, NY, USA: ACM, 2001, pp. 171-178.
  17. M. Colbert and J. Krivanek, "Real-time shading with filtered importance sampling," in SIGGRAPH '07: ACM SIGGRAPH 2007 sketches. New York, NY, USA: ACM, 2007, p. 71.
  18. W. Matusik, H. Pfister, M. Brand, and L. McMillan, "A data-driven reflectance model," ACM Transactions on Graphics, vol. 22, no. 3, pp. 759-769, July 2003. https://doi.org/10.1145/882262.882343
  19. K. Dana, B. Van-Ginneken, S. Nayar, and J. Korenderink, "Reflectance and Texture of Real World Surfaces," ACM Transactions on Graphics (TOG), vol. 18, no. 1, pp. 1-34, Jan 1999. https://doi.org/10.1145/300776.300778
  20. Z. Wang, A. C. Bovik, H. R. Sheikh, S. Member, E. P. Simoncelli, and S. Member, "Image quality assessment: Form error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 2004. https://doi.org/10.1109/TIP.2003.819861