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Abstract. Recently, Zaindin and Sarhan (2009) introduced a new distribution
named new generalized Weibull distribution. This paper deals with the problem
of estimating the parameters of this distribution in the case where the data
is grouped and censored. We use both the maximum likelihood and Bayes
techniques. The results obtained are illustrated on a set of real data.
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1. INTRODUCTION

In analyzing lifetime data one often uses the exponential, Rayleigh, linear failure rate or
generalized exponential distributions. It is known that exponential can have only constant
hazard function whereas Rayleigh, linear failure rate and generalized exponential distribution
can have only monotone (increasing in case of Rayleigh or linear failure rate and increasing/
decreasing in case of generalized exponential distribution) hazard functions. Unfortunately,
in practice often one needs to consider non-monotonic function such as bathtub shaped
hazard function also, see, for example, Lai et al. (2001).

Mudholkar and Srivastava (1993) presented a generalization of the Weibull family called
the exponentiated-Weibull family. They showed that this generalization not only includes
distributions with bathtub and unimodal hazard rates but provides a broader class of mono-
tone hazard rates. Nadarajah and Kotz (2006) introduced four exponentiated type distri-
butions: the exponentiated gamma, exponentiated Weibull, exponentiated Gumbel, and the
exponentiated Frchet distribution. They provided a treatment of the mathematical prop-
erties for each distribution. Sarhan and Kundu (2008) presented a generalization of the
linear hazard rate distribution called the generalized linear hazard rate distribution. They
explained that this distribution can have increasing, decreasing and bathtub shaped haz-
ard rate functions which are quite desirable for data analysis purposes. Recently, Sarhan
and Zaindin (2009) presented a new generalization of the traditional Weibull distribution
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called the Modified Weibull Distribution and denoted as MWD(α, β, γ). The cumulative
distribution function, say CDF, of MWD(α, β, γ) takes the following form

F (x) = 1− exp {−αx− βxγ} , x ≥ 0, (1.1)

where α, β, γ ≥ 0 such that α+ βγ > 0. This condition is made on the parameter space to
insure that the hazard rate function is positive. The MWD(α, β, γ) generalizes the following
distributions:

1. Exponential distribution, Johnson and Kotz (1970): by setting β = 0 or α = 0, γ = 1.

2. Weibull distribution, Johnson and Kotz (1970): by setting α = 0.

3. Rayleigh distribution, Johnson and Kotz (1970): by setting α = 0, γ = 2.

4. Linear Failure Rate distribution, Johnson and Kotz (1970): by setting γ = 2.

It is known that the exponential distribution has a constant hazard function whereas the

Rayleigh can have only monotone increasing hazard function and the modified Weibull distri-

bution can have either constant or monotone increasing hazard function. Unfortunately, in

practice often one needs to consider non-monotonic functions such as bathtub shaped hazard

functions, see for example Lai et al. (2001). Several papers studied the statistical inference

of the different models. Among these are Pandey et al. (1993), Sen and Bhattacharyya

(1995), and Sarhan (2004).

Recently, Sarhan and Zaindin (2009) introduced a new four-parameter distribution which

may have bathtub shaped hazard function, called as new generalized Weibull distribution

denoted by NGWD(α, β, γ, λ).

It is observed that NGWD has increasing, decreasing and bathtub shaped hazard func-

tions. The CDF of the NGWD(α, β, γ, λ) takes the following form

F (x;α, β, γ, λ) =
[
1− e−αx−βxγ

]λ
, x ≥ 0, (1.2)

where γ, λ > 0, α, β ≥ 0 such that α+ β > 0.

The NGWD(α, β, γ, λ) generalizes several distributions. Among these distributions are

1. Generalized exponential distribution, Gupta and Kundu (1999): by setting either
β = 0 or γ = 1 or α = 0, γ = 1.
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2. Modified Weibull distribution, Sarhan and Zaindin (2009): by setting λ = 1.

3. Generalized Weibull distribution, Mudholkar and Srivastava (1993): by setting α = 0.

4. Generalized Rayleigh distribution, Surles and Padgett (2005): by setting α = 0, γ = 2.

5. Generalized linear failure rate distribution, Sarhan and Kundu (2008): by setting
γ = 2.

Sarhan and Zaindin (2009) studied different statistical properties of this distribution and

some physical interpretations. Also, they used a simple random sample to obtain the maxi-

mum likelihood estimates (MLEs) of the NGWD(α, β, γ, λ). In this paper, we use grouped

and censored data to estimate the parameters of the NGWD(α, β, γ, λ). The maximum like-

lihood and Bayes methods are used to derive the point and confidence interval estimates of

the parameters. Further, we study whether this distribution fits a set of real data better than

the modified Weibull distribution the MWD(α, β, γ). Two criteria are used for this purpose.

These are the Kolmogorov-Smirnov test statistic and the values of the log-likelihood function.

The rest of this paper is organized as follows. Some properties of the NGWD(α, β, γ, λ)

are presented in Section 2. Section 3 presents the model assumptions and notations. Sec-

tion 4 gives the parameter estimations using both maximum likelihood and Bayes techniques.

We use a set of real data in Section 5 as an application.

2. THE NGWD

The survival function of the NGWD(α, β, γ, λ) is

S(x;α, β, γ, λ) = 1−
[
1− e−αx−βxγ

]λ
, x ≥ 0, (2.1)

The probability density function, say pdf, of NGWD(α, β, γ, λ) is

f(x;α, β, γ, λ) = λ
(
α+ βγxγ−1

)
e−αx−βxγ

[
1− e−αx−βxγ

]λ−1

, x ≥ 0, (2.2)

Figure 2.1 shows some patterns of the pdf of NGWD(α, β, γ, λ) , which may have a

single mode or no mode at all.
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Figure 2.1. Different patterns of the probability density function.

and the hazard function of NGWD(α, β, γ, λ) is

h(x;α, β, γ, λ) =
λ
(
α+ βγxγ−1

)
e−αx−βxγ [

1− e−αx−βxγ ]λ−1

1− [1− e−αx−βxγ ]
λ

x ≥ 0. (2.3)

Figure 2.2 shows the failure rate function of NGWD(α, β, γ, λ) for different parameter

values. From this figure, it is immediate that the hazard functions can be increasing, de-

creasing or bathtub shaped.

One can easily verify that:

1. when γ = 1, then the hazard function is either increasing (if λ > 1) or constant (if

λ = 1) or decreasing (if λ < 1);

2. when γ < 1, then the hazard function is either decreasing if λ ≤ 1 or bathtub shaped

if λ > 1;
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3. when γ > 1, then the hazard function is either increasing (if λ ≥ 1) or bathtub shaped

(if λ < 1).
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Figure 2.2. Different patterns of the hazard rate function.

3. MODEL ASSUMPTION AND NOTATION

Throughout this paper, we use the following assumptions.

1. n independent and identical experimental units are put on a life test at time zero.

2. The lifetime of each unit follows a NGWD(α, β, γ, λ) with CDF given by (1.2).

3. The inspection times 0 < t1 < t2 < · · · < tk <∞ are predetermined.

4. The test is terminated at the predetermined time tk. That is, the data is of Type-I

censoring.
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5. t0 = 0 and tk+1 = ∞.

6. The numbers of failures in (ti, ti+1] are recorded.

The data collected from the above test scheme consist of the number ni of failures in

the interval (ti−1, ti], i = 1, 2, ...k and the number nk+1 of units tested without failing up

to time tk (censored units).

4. PARAMETER ESTIMATION

In this section, we use the maximum likelihood and Bayes procedures to derive point and

interval estimates of the unknown parameters of the NGWD(α, β, γ, λ). Let τ denote the

set of available observations, τ = {t1, · · · , tk;n1, · · · , nk, nk+1} and let θ = (θ1, θ2, θ3, θ4) =

(α, β, γ, λ).

4.1. Maximum likelihood procedure

In this subsection, we use the maximum likelihood procedure to derive the point and

interval estimates of the parameters.

4.1.1. Point estimators

Based on the Type-I censored data, the likelihood function is given by

L(τ ; θ) = C
k∏

i=1

[P{ti−1 < T ≤ ti}]ni [P{T > tk}]nk+1 , (4.1)

where C = n!∏k+1

ℓ=1
nℓ!

is independent of θ. Since,

P{ti−1 < T ≤ ti} = F (ti)− F (ti−1) ,

therefore, expression (4.1) can be rewritten as

L(τ ; θ) = C

{
1−

[
1− e−(αtk+βtγ

k)
]λ}nk+1

k∏
i=1

{[
1− e−(αti+βtγ

i )
]λ

−
[
1− e−(αti−1+βtγ

i−1)
]λ}ni

. (4.2)
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Thus, the log-likelihood function is

L(τ ; θ) = lnC + nk+1 ln

{
1−

[
1− e−(αtk+βtγ

k
)
]λ}

+
k∑

i=1

ni ln

{[
1− e−(αti+βtγ

i
)
]λ

−
[
1− e−(αti−1+βtγ

i−1
)
]λ}

. (4.3)

Let for i = 1, · · · , k,

Di(θ) =
[
1−Ai(α, β, γ)

]λ
−

[
1−Ai−1(α, β, γ)

]λ
,

where

Ai(α, β, γ) =


1, i = 0,

e−(αti+βtγ
i
), i = 1, · · · , k,

0, i = k + 1.

The log-likelihood function (4.3) becomes

L(τ ; θ) = lnC +
k+1∑
i=1

ni ln

{[
1−Ai(α, β, γ)

]λ
−
[
1−Ai−1(α, β, γ)

]λ}

= lnC +
k+1∑
i=1

ni lnDi(θ). (4.4)

To derive the MLE of the vector of unknown parameters θ, we need to compute the first

partial derivatives of the log-likelihood function L(τ ; θ) with respect to each parameter. For

ease of notation, we will denote, for any function f(x1, x2, x3, x4), the first partial derivatives

by fxi and the second partial derivatives by fxixj .

Using the following derivatives, for i = 1, · · · , k,

∂Ai(α, β, γ)

∂α
= −tiAi(α, β, γ),

∂Ai(α, β, γ)

∂β
= −tγi Ai(α, β, γ),

∂Ai(α, β, γ)

∂γ
= −βtγi ln(ti)Ai(α, β, γ),
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we get the first partial derivatives of L(τ ; θ) with respect to θj , j = 1, 2, 3, 4 as

Lθj =
k+1∑
i=1

ni
D(i)

θj

Di(θ)
, (4.5)

where

D(i)
α = λ


tiAi(α, β, γ) [1−Ai(α, β, γ)]

λ−1
, i = 1,

tiAi(α, β, γ) [1−Ai(α, β, γ)]
λ−1

−ti−1Ai−1(α, β, γ) [1−Ai−1(α, β, γ)]
λ−1

, i = 2, · · · , k + 1,

D(i)
β = λ


tγi Ai(α, β, γ) [1−Ai(α, β, γ)]

λ−1
, i = 1,

tγi Ai(α, β, γ) [1−Ai(α, β, γ)]
λ−1

−tγi−1Ai−1(α, β, γ) [1−Ai−1(α, β, γ)]
λ−1

, i = 2, · · · , k + 1,

D(i)
γ = λ


tγi β ln(ti)Ai(α, β, γ) [1−Ai(α, β, γ)]

λ−1
, i = 1,

tγi β ln(ti)Ai(α, β, γ) [1−Ai(α, β, γ)]
λ−1

−tγi−1β ln(ti−1)Ai−1(α, β, γ) [1−Ai−1(α, β, γ)]
λ−1

, i = 2, · · · , k + 1,

D(i)
λ =


[1−Ai(α, β, γ)]

λ
ln [1−Ai(α, β, γ)] , i = 1,

[1−Ai(α, β, γ)]
λ
ln [1−Ai(α, β, γ)]

− [1−Ai−1(α, β, γ)]
λ
ln [1−Ai−1(α, β, γ)] , i = 2, · · · , k + 1.

Setting Lθj = 0, the likelihood equations become

0 =
k+1∑
i=1

ni
D(i)

θj

Di(θ)
, j = 1, 2, 3, 4. (4.6)

The MLE of the parameters α, β, γ and λ are the solution of the system of nonlinear equations

(4.6). As it seems, this system has no closed form solution in α, β, γ and λ. Therefore in

sections below, we used the mathematical package MathCad to get the numerical solution.

4.1.2. Asymptotic confidence bounds

Since the MLE of the parameters cannot be derived in closed forms, we cannot get the

exact confidence bounds of the parameters. The idea is to use the large sample approxi-

mation. The maximum likelihood estimators of θ can be treated as being approximately
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multi-normal with mean θ and variance-covariance matrix equal to the inverse of the ex-

pected information matrix. That is,

(
θ̂ − θ

)
→ N4

(
0, I−1(θ̂)

)
, (4.7)

where I−1
(
θ̂
)
is the variance-covariance matrix of the unknown parameters θ. The element

Iij(θ̂), i, j = 1, 2, 3, 4, of the 4× 4 matrix I−1 is given by

Iij(θ̂) = − Lθiθj

∣∣
θ=θ̂

. (4.8)

From expression (4.5), the second partial derivatives of the log-likelihood function are found

to be

Lθℓ θr =
k+1∑
i=1

ni
D(i)

θℓθr
Di(θ)−D(i)

θℓ
D(i)

θr

[Di(θ)]
2 , ℓ, r = 1, 2, 3, 4, (4.9)

where

D(i)
αα = −λ


t2iAi(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]

λ−2
, i = 1,

t2iAi(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]
λ−2

−t2i−1Ai−1(α, β, γ) [1− λAi−1(α, β, γ)] [1−Ai−1(α, β, γ)]
λ−2

, i = 2, · · · , k + 1,

D(i)
ββ = −λ



t2γi Ai(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]
λ−2

, i = 1,

t2γi Ai(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]
λ−2

−t2γi−1Ai−1(α, β, γ) [1− λAi−1(α, β, γ)]

× [1−Ai−1(α, β, γ)]
λ−2

, i = 2, · · · , k + 1,

D(i)
γγ = λ



βtγi ln
2(ti)Ai(α, β, γ) [1−Ai(α, β, γ)]

λ−2

×[1−Ai(α, β, γ)]− βtγ [1− λAi(α, β, γ)], i = 1,

βtγi ln
2(ti)Ai(α, β, γ) [1−Ai(α, β, γ)]

λ−2

× [1−Ai(α, β, γ)]− βtγ [1− λAi(α, β, γ)]

− βtγi−1ln
2(ti−1)Ai−1(α, β, γ) [1−Ai−1(α, β, γ)]

λ−2

× [1−Ai−1(α, β, γ)]− βtγ [1− λAi−1(α, β, γ)], i = 2, · · · , k + 1,

D(i)
λλ =


[1−Ai(α, β, γ)]

λ
ln2 [1−Ai(α, β, γ)] i = 1,

[1−Ai(α, β, γ)]
λ
ln2 [1−Ai(α, β, γ)]

− [1−Ai−1(α, β, γ)]
λ
ln2 [1−Ai−1(α, β, γ)] , i = 2, · · · , k + 1,
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D(i)
αβ = −λ



tγ+1
i Ai(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]

λ−2
, i = 1,

tγ+1
i Ai(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]

λ−2

−tγ+1
i−1Ai−1(α, β, γ) [1− λAi−1(α, β, γ)]

× [1−Ai−1(α, β, γ)]
λ−2

, i = 2, · · · , k + 1,

D(i)
αγ = −λ



tγ+1
i β ln(ti)Ai(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]

λ−2
, i = 1,

tγ+1
i β ln(ti)Ai(α, β, γ) [1− λAi(α, β, γ)] [1−Ai(α, β, γ)]

λ−2

−tγ+1
i−1 β ln(ti−1)Ai−1(α, β, γ) [1− λAi−1(α, β, γ)]

× [1−Ai−1(α, β, γ)]
λ−2

, i = 2, · · · , k + 1,

D(i)
αλ =



tiAi(α, β, γ) [1−Ai(α, β, γ)]
λ−1

{
1 + λ ln [1−Ai(α, β, γ)]

}
, i = 1,

tiAi(α, β, γ) [1−Ai(α, β, γ)]
λ−1

{
1 + λ ln [1−Ai(α, β, γ)]

}
−ti−1Ai−1(α, β, γ) [1−Ai−1(α, β, γ)]

λ−1

×
{
1 + λ ln [1−Ai−1(α, β, γ)]

}
, i = 2, · · · , k + 1,

D(i)
βγ =



λ ln(ti)ti
γAi(α, β, γ) [1−Ai(α, β, γ)]

λ−2{
(1−Ai(α, β, γ)− βti

γ [1− λAi(α, β, γ)]
}
, i = 1,

λ ln(ti)ti
γAi(α, β, γ) [1−Ai(α, β, γ)]

λ−2 ×{
(1−Ai(α, β, γ)− βti

γ [1− λAi(α, β, γ)]
}
+

λ ln(ti−1)ti−1
γAi−1(α, β, γ) [1−Ai−1(α, β, γ)]

λ−2 ×{
(1−Ai−1(α, β, γ)− βti−1

γ [1− λAi−1(α, β, γ)]
}
, i = 2, · · · , k + 1.

D(i)
βλ =



ti
γAi(α, β, γ) [1−Ai(α, β, γ)]

λ−1
{
1 + λ ln [1−Ai(α, β, γ)]

}
, i = 1,

ti
γAi(α, β, γ) [1−Ai(α, β, γ)]

λ−1
{
1 + γ ln [1−Ai(α, β, γ)]

}
−ti−1

γAi−1(α, β, γ) [1−Ai−1(α, β, γ)]
λ−1 ×{

1 + λ ln [1−Ai−1(α, β, γ)]
}
, i = 2, · · · , k + 1.

D(i)
γλ =



βti
γ ln(ti)Ai(α, β, γ) [1−Ai(α, β, γ)]

λ−1 ×{
1 + λ ln [1−Ai(α, β, γ)]

}
, i = 1,

βti
γ ln(ti)Ai(α, β, γ) [1−Ai(α, β, γ)]

λ−1 ×{
1 + λ ln [1−Ai(α, β, γ)]

}
−

βti−1
γ ln(ti−1)Ai−1(α, β, γ) [1−Ai−1(α, β, γ)]

λ−1 ×{
1 + λ ln [1−Ai−1(α, β, γ)]

}
, i = 2, · · · , k + 1.

Therefore, the approximate 100(1 − ϑ)% two-sided confidence intervals for α, β, γ and
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λ are, respectively, given by

α̂± Zϑ/2

√
I−1
11 (θ̂) , β̂ ± Zϑ/2

√
I−1
22 (θ̂) , γ̂ ± Zϑ/2

√
I−1
33 (θ̂) , λ̂± Zϑ/2

√
I−1
44 (θ̂) .

Here, Zϑ/2 is the upper (ϑ/2)th percentile of the standard normal distribution.

4.2. Bayes procedure

In this subsection, we use the Bayes procedure to derive the point and interval esti-

mates of the parameters. To obtain the Bayes estimates, we need the following additional

assumptions:

B.1) The parameters θi, i = 1, 2, 3, 4, behave as independent random variables.

B.2) The prior pdf of θi is symmetrical triangular on the interval [ai, bi]. Namely,

gθi(u) =
1

εi
(εi − |u− µi|) , u ∈ [ai, bi] ⊂ (0, ∞), (4.10)

where εi =
bi−ai

2 and µi =
bi+ai

2 .

B.3) The loss function is

ℓ(θ, θ̂) =
4∑

i=1

κi

(
θi − θ̂i

)2

, κi > 0. (4.11)

Based on the assumptions (B.1) and (B.2), the joint prior pdf of θ is

g(θ) =
4∏

i=1

1

εi
(εi − |θi − µi|) , θi ∈ [ai, bi]. (4.12)

When the joint prior pdf is (4.12), the joint posterior pdf of θ, given the available observa-

tions, is

π(θ|τ) =
ψ(θ)

I0
, (4.13)

where

ψ(θ) =

{
4∏

i=1

(εi − |θi − µi|)

}{
1−

[
1− e

−
(
θ1tk+θ2t

θ3
k

)]θ4}nk+1

k∏
i=1

{[
1− e

−
(
θ1ti+θ2t

θ3
i

)]θ4
−
[
1− e

−
(
θ1ti−1+θ2t

θ3
i−1

)]θ4}ni

, (4.14)



34 Estimation of the Parameters of the New Generalized Weibull Distribution

and

I0 =

∫ b1

a1

∫ b2

a2

∫ b3

a3

∫ b4

a4

ψ(θ1, θ2, θ3, θ4) dθ4 dθ3 dθ2 dθ1. (4.15)

The marginal posterior pdfs of θi, i = 1, 2, 3, 4, are given by

π1(θ1|τ) =
θ1
I0

∫ b2

a2

∫ b3

a3

∫ b4

a4

ψ(θ1, θ2, θ3, θ4) dθ4dθ3 dθ2, (4.16)

π2(θ2|τ) =
θ2
I0

∫ b1

a1

∫ b3

a3

∫ b4

a4

ψ(θ1, θ2, θ3, θ4) dθ4 dθ3 dθ1, (4.17)

π3(θ3|τ) =
θ3
I0

∫ b1

a1

∫ b2

a2

∫ b4

a4

ψ(θ1, θ2, θ3, θ4) dθ4dθ2 dθ1. (4.18)

π4(θ4|τ) =
θ3
I0

∫ b1

a1

∫ b2

a2

∫ b3

a3

ψ(θ1, θ2, θ3, θ4) dθ3 dθ2 dθ1. (4.19)

4.2.1. Point estimators

Under the assumption (B.3), the Bayes estimate of θi, say θ̃i, and the associated posterior

risk, say R(θ̃i), are

θ̃i =
I
(1)
θi

I0
, (4.20)

and

R(θ̃i) =
I
(2)
θi

I0
−

[
I
(1)
θi

I0

]2

, (4.21)

where, for j = 1, 2,

I
(j)
θi

=

∫ b4

a4

∫ b3

a3

∫ b2

a2

∫ b1

a1

θji ψ(θ1, θ2, θ3, θ4) dθ1 dθ2 dθ3 dθ4. (4.22)

4.2.2. Interval estimates

The Bayesian approach to interval estimation is much more direct than the maximum

likelihood approach. Once the marginal posterior pdf of θi has been obtained, a symmetric

100(1 − ϑ)% two-sided Bayes probability interval [100(1 − ϑ)% TBPI] estimate of θi, i =

1, 2, 3, 4, denoted [ℓi, ui], is obtained by solving the following two equations:∫ ℓi

0

πi(w|τ)dw =
ϑ

2
,∫ ∞

ui

πi(w|τ)dw =
ϑ

2
, (4.23)
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for the limits ℓi and ui. As it seems, the above two equations have no analytical solution

in ℓi and ui. We again use in Section 5 below, the MathCad package to get the numerical

solution.

5. DATA ANALYSIS

In this section, we use the real data set from Nelson (1982), which reports a set of

cracking data on 167 independent and identically parts in a machine. The test duration was

63.48 months and 8 unequally spaced inspections were conducted to obtain the number of

cracking parts in each interval. The data were

(t1, · · · , t8) = (6.12, 19.92, 29.64, 35.40, 39.72, 45.24, 52.32, 63.48)

and

(n1, · · · , n9) = (5, 16, 12, 18, 18, 2, 6, 17, 73)

We assume that these data follow the following two distributions: (1) MWD(α, β, γ); and (2)

NGWD(α, β, γ, λ). Then we compute the maximum likelihood estimates of the parameters

included in each distribution and we compare these distributions based on two different

criteria. The criteria used are: the log-likelihood function and the Kolmogorov-Smirnov (K-

S) test statistic. Table 5.1 shows the MLE of the parameters of the distributions considered

and the associated log-likelihood function values.

Table 5.1. The MLE of the parameters, the values of log-likelihood and K-S.
Distribution parameters L K-S

MWD α̂ = 1, 281× 10−3, β̂ = 1.134× 10−3, γ̂ = 1.566 −309.651 0.138

NGWD α̂ = 0.024, β̂ = 0.165, γ̂ = 0.002, λ̂ = 2.683 −309.223 0.137

Based on the values of the log-likelihood function and the K-S statistic in Table 1, the

NGWD
(
0.024, 0.165, 0.002, 2.683

)
fits the above data slightly better than the MWD

(
1.281×

10−3, 1.134× 10−3, 1.566
)
.
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The survival function of the data is estimated using non-parametric and parametric

methods. In the case of non-parametric estimation, we used Kaplan-Meier (K-M) method.

For the parametric estimations, we used the two models MWD and NGWD. Figure 5.1

shows the Kaplan-Meier estimate of the survival function and its two parametric estimates.

It seems from this figure that the NGWD model is slightly closer to the K-M than the

MWD model. This result agrees with the values of K-S test statistics and the values of the

log-likelihood functions shown in Table 5.1.
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Figure 5.1. The empirical and fitted survival functions.

Figure 5.2 shows the variation of the hazard rate functions of the NGWD
(
2.349×10−5, 0.078, 1.654, 9.313

)
and the MWD

(
1.281× 10−3, 1.134× 10−3, 1.566

)
.
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Figure 5.2. The estimated hazard rate functions.

Figure 5.3 depicts the forms of the estimated pdf of the data considering the two models

NGWD
(
2.349× 10−5, 0.078, 1.654, 9.313

)
and MWD

(
1.281× 10−3, 1.134× 10−3, 1.566

)
.

For the Bayes technique, it is assumed that the prior pdf of α, β , γ and λ have the

supports [0, 0.1], [0, 0.1] , [0, 0.1],and [0.5, 1.7], respectively. These supports were chosen with

the help of the MLE of the parameters obtained above. The Bayes point estimates of the

parameters were found as

α̃ = 0.017, β̃ = 0.02, γ̃ = 0.399, λ̃ = 1.653

with corresponding minimum posterior risk:

R(α̃) = 1.39× 10−5, R(β̃) = 3.279× 10−4, R(γ̃) = 0.088, R(λ̃) = 0.014.

The value of the K-S test statistic when we use the Bayes estimate of the parameters is 0.159
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which is greater than the K-S value using the MLE of the parameters. This means that the

maximum likelihood procedure provides better estimates than the Bayes procedure in this

sense. Also, both MathCad and Matlab packages were unable to converge to a solution

in the set of equations (4.23) which give the two-sided Bayes probability interval estimates

of the parameters.
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Figure 5.3. The estimated probability density functions.

6. CONCLUSION

In this paper, we discussed the parameter estimation of the NGWD(α, β, γ, λ). The

maximum likelihood and Bayes techniques have been used. The MWD(α, β) is tested against

NGWD(α, β, γ, λ) using a set of real data. Based on the two criteria (the values of the

log-likelihood function and K-S test statistic), we found that the NGWD(α, β, γ, λ) fits
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the data better than the MWD(α, β, γ). Further, we used the MLE of the parameters of

NGWD(α, β, γ, λ) to construct suitable prior supports for α, β, γ, and λ. In spite of this,

the maximum likelihood procedure provides better estimates than the Bayes procedure in

the sense of having smaller K-S. Also, we failed to obtain numerically the TBPI of the

parameters. Finally, we conclude that the maximum likelihood procedure outperforms the

Bayes procedure in this situation.
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