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Abstract. In this paper we will discuss the stochastic analysis of a three state
semi-Markov reliability model. Maximum likelihood procedure will be used
to obtain the estimators of the parameters included in this reliability model.
Based on the assumption that the lifetime and repair time of the system units
are generalized linear failure rate random variables, the reliability function of
this system is obtained. Also, the distribution of the first passage time of this
system will be derived. Some important special cases are discussed.
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1. INTRODUCTION

A semi-Markov model has been used by Kao (1974) in some context of hospital ad-
ministration in the study of the dynamics of movement of patients through care areas in a
hospital. El-Gohary (2005) has used the semi-Markov process to describe a reliability sys-
tem that consists of one active unit, an identical spare, a switch and a repair facility. In this
paper it is assumed that the lifetimes of the active repair units are generalized exponentially
distributed (El-Gohary(2004), Reinhard and Snoussi(2002) and Kulkarni(1995)).

The stochastic models have many applications in different fields such as reliability sys-
tems, social security policy analysis, health care services [3,4,6].

The evolution of many systems naturally ends as the first failure occurs, because external
intervention is not practicable. These systems are non-repairable systems. For other systems,
generally of high complexity, renewal possibilities exist, and their effectiveness therefore
depends not only on their intrinsic reliability but also on the characteristics of maintenance
and repair actions.
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To discuss the stochastic analysis of our reliability model, we present some important
definitions. A semi Markov process {X(t) : t ≥ 0} is a stochastic process in which changes of
state occur according to a Markov chain with the time interval between two successive transi-
tions is a random variable whose distribution depends on the state from which the transition
takes place as well as the state to which the next transition takes place (Medhi(1982)). Gen-
erally a semi-Markov process with discrete state space can be defined as a Markov renewal
process (Kao(1974)).

In this paper, in section 2, we will display some important definitions and properties
of a semi-Markov process and its kernel. In section 3 we use the stochastic analysis and
semi-Markov model to estimate the parameters included in some reliability models. The
maximum likelihood method is used to derive the point and confidence interval estimates of
these parameters. Based on the assumption that the lifetime and repair time of the system
units are generalized linear failure rate random variables the distribution of the first passage
time of this system will be derived.

2. SEMI-MARKOV KERNEL

In this section, we consider some kind of generalization of a Markov process as well as
of a renewal process. Also, we will discuss the semi-Markov kernel. Further, the properties
of the semi-Markov kernel will be discussed.

Definition 2.1 Let the state of a stochastic process be denoted by the set of nonnegative
integers, S = {0, 1, 2, . . .}, and let the transitions of the process occur at time instants
t0 = 0, t1, t2, . . . (tn < tn+1). Assume that Xn denote the transition occurring at time
instant tn. Then the twice {Xn, tn}, n = 0, 1, 2, . . . is said to constitute a Markov renewal
process if

P{Xn+1 = k, tn+1 − tn ≤ t|X0 = i0, X1 = i1, . . . , Xn = in; t0, t1, . . . , tn} =

P{Xn+1 = k, tn+1 − tn ≤ t|Xn = in},
(2.1)

Definition 2.2 The Markov renewal process {Xn, tn}, n = 0, 1, 2, . . . is said to homoge-
neous if

P{Xn+1 = k, tn+1 − tn ≤ t|Xn = i} = Qik(t) (2.2)

does not depend on n

Lemma 2.3 Assume that {Xn, n = 0, 1, 2, . . .} constitutes a Markov chain with state space
S = {0, 1, 2, . . .},and transition probability matrix P = {pij}. The continuous parameter
process Y (t) with state space S = {0, 1, 2, . . .}, defined by

Y (t) = Xn, tn ≤ t < tn+1 (2.3)

is called semi-Markov process.
The semi-Markov process is a stochastic process which changes its state occur according

to a Markov chain and the time interval between two successive transitions is a random
variable, whose distribution may be depend not only on the present state but also on the
state of the next transition. Next, through this paper we assume the state space S of the
semi-Markov process is finite number of renewal times on the time interval [0, t].
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Definition 2.4 A two-dimensional Markov process {ξn, ϑn, n ∈ N} with values in S×[0,∞)
is called a Markov renewal process if and only if

1. Qij = P{ξn+1 = j, ϑn+1 ≤ t|ξn = i, ϑn = tn, . . . , ξ0 = i0, ϑ0 = t0}

= P{ξn+1 = j, ϑn+1 ≤ t|ξn = i}

2. P{ξ0 = i, ϑ0 = 0} = pi0

In the Markov renewal process, the non-negative random variables ϑn, n ≥ 1, define the
interval between Markov renewal times:

τn =

n∑
k=1

ϑk, n ≥ 1, τ0 = 0

Now, let

ν(t) :=
∞∑

n=1

I[0,t](τn) (2.4)

where

I[0,t](τn) =

 1 if τn ∈ [0, t]

0 otherwise
(2.5)

The process ν(t) is called a counting process. It determines the number of renewal times
on the segment [0, t].

Definition 2.5 A stochastic process {X(t) : t ≥ 0} where X(t) = ξν(t) is called a semi-
Markov process that generated by the Markov renewal process with initial distribution
P 0
i = p(ξ0 = i) and the kernel Q(t), t ≥ 0.

Since the counting process ν(t) keeps constant values on the half-interval [tn, tn+1) and is
continuous from the right, then the semi-Markov process keeps also constant values on the
half intervals [τn, τn+1): Xn(t) = ξn for t ∈ [τn, τn+1). Moreover the sequence {X(τn) : n ∈
N} is a Markov chain with transition probability matrix P = {pij = Qij(∞), i, j ∈ S}
that is called an embedded Markov chain. The concept of a Markov renewal process is a
natural generalization of the concept of the ordinary renewal process given by a sequence of
independent identically non-negative random variables θn, n ≥ 1. The random variables θn
can be interpreted as lifetimes.

Definition 2.6 The stochastic matrix Q(t) = [Qij(t); i, j ∈ S], t ≥ 0 is said to be a renewal
kernel if and only if the following conditions are satisfied:

1. The functions Qij(t) are nondecreasing functions in t.

2.
∑

j∈S Qij = Gi(t) are distribution functions in t.

3. [Qij(+∞) = Pij , i, j ∈ S] = P is a stochastic matrix.
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Lemma 2.7 Assume that {X(t) : t ≥ 0} is a semi-Markov process with renewal kernel

Q(t) = Qij(t), i, j ∈ S, t ∈ [0,∞) (2.6)

then

P{ξ0 = i0, ϑ0 = 0, ξ1 = i1, ϑ1 ≤ s1, . . . , ξn = in, ϑn ≤ sn} = pi0

n∏
k=1

Qik−1ik(sk) (2.7)

A main objective of this paper is to use a three state semi-Markov process to describe a
reliability system which consists of operating unit, identical spare unit, a switch and repair
facility. Also, use the maximum likelihood procedure to obtain the estimators of the unknown
parameters included in this reliability system.

In what follows, we will use Lemma 2.7 and semi-Markov kernel to introduce the likeli-
hood probability contribution function for the underlying reliability system.

2.1. Likelihood function

In this section, we use the semi-Markov realization to construct the likelihood function
of the standby system with repair. In such study, we assume that the semi-Markov renewal
kernel of the desired reliability system depends on a vector of unknown parameters θ =
(θ1, θ2, . . . , θk). Therefore,

Q(t|θ) = {Qij(t|θ) : i, j ∈ S}, (2.8)

Let us assume that there is a sequence of random observations (i0, t0), (i1, t1), . . . , (in, tn)
of the random vector (ξ0, ϑ0), (ξ1, ϑ1), . . . , (ξn, ϑn). Suppose z denotes the observation
(i0, t0), (i1, t1), . . . , (in, tn). We assume that there exist functions denoted by qij(t|θ), i, j ∈ S
such that

Qij(t|θ) =
∫ t

0

qij(u|θ)du (2.9)

Using Lemma 2.7, the likelihood function for the given random observations of the semi-
Markov process becomes

L(z; θ) = pi0

n∏
s=1

qis−1is(ts|θ) (2.10)

Theorem 2.8 Suppose that {X(t) : t ∈ R+} be a semi-Markov process with a finite set
of states S{1, 2, . . . r} and having semi-Markov kernel Q(.). Let {(i0, t0), (i1, t1), (i2, t2), . . .,
(in, tn)} be a given observation vector of two dimension random vector {(ξ0, ϑ0), (ξ1, ϑ1), (ξ2, ϑ2),
. . ., (ξn, ϑn)}, where i0, i1, i2, . . . , in ∈ S and t0, t1, t2, . . . , tn ∈ R+. Assume also that the
continuous densities qij(.) corresponding to the semi-Markov kernel exist such that

Qij(t) =

∫ t

0

qij(s)ds, ∀i, j ∈ S, t ∈ R+ (2.11)

Then the likelihood function of the given observations is given by:

L(i0, i1, i2, . . . , in; t0, t1, t2, . . . , tn; θ) = pi0

n∏
s=1

qis−1is(tk, θ) (2.12)



A. El-Gohary and A. Al-Khedhairi 5

Proof.
The proof of this theorem can be reached by using Lemma 1.7. Therefore according to this
lemma we have

P{ξ0 = i0, ξs, ts ≤ ts, s = 1, 2, . . . , n} = pi0

n∏
k=1

Qik−1ik(tk|θ) (2.13)

Using (2.11)we get

n∏
k=1

Qik−1ik(tk|θ) =
∫ t1

0

∫ t2

0

∫ t3

0

. . .

∫ tn

0

qi0i1(s1, θ)qi1i2(s2, θ) . . . qin−1in(sn, θ)ds1ds2 . . . dsn

(2.14)
Combining (2.13) and (2.14) we can reach to (2.12) which completes the proof. Next, we
proceed to apply maximum likelihood procedure to obtain estimators of the parameters
included in a three-state semi Markov reliability model. In this study we will consider both
of the life and repair times of the standby system with repair are generalized linear failure
random variables.

3. SEMI-MARKOV MODEL OF STANDBY SYSTEM

This section is devoted to introduce the assumptions of the underling reliability model.
Also the semi-Markov kernel of the stochastic process that describe this reliability model
will be introduced. Further, the densities corresponding to this kernel will be obtained.

The semi-Markov process is a nice tool to describe many reliability models. The model
of this is a slight modification of well a known reliability model introduced by Barlow and
Proschan (1965). In order to describe a reliability model of a standby system with a repair
facility, the following assumptions are needed:

1. We consider a one reliability system which consists of one active unit, an identical
spare, a switch and a repair facility.

2. As the active unit fails, the spare unit operates by the switch immediately.

3. The failed units can be repaired by the repair facility and the repair fully restore the
units. Therefore, the repaired unit can be considered as new one.

4. The whole system fails as the active unit fails and repair unit has not been finished
yet or as the active unit fails and the switch fails.

5. The lifetimes of the active units can be represented by independent and identical
non-negative random variables T with probability density function f(t), t ≥ 0.

6. The lengths of repair periods of the units can be represented by independent and iden-
tical non-negative random variable Θ with the distribution functionH(t) = P{Θ ≤ t}.

7. The event E denotes the switch-over as the active unit fails. So the probability that
the switch performs as required is represented by P (E) = θ0.

8. The whole system can also be repaired, and the failed system is replaced by a new
identical one.
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9. The replacing time is represented by a non-negative random variable K with distri-
bution function C(t) = P{K ≤ t}.

10. Finally, we assume that all the random variables that described above are independent.

The standby reliability system with repair facility can be described by a three state semi-
Markov process with S = {0, 1, 2}.

Using the model assumptions that the states of the prescribed system can be considered
as follows:

1. The system failure represents the first state of the semi-Markov describing the model
and denoted by (0).

2. The failed unit is repaired and the standby unit is operating represents the second
state of the semi-Markov describing the model and denoted by (1).

3. Both active and standby units are ”Up” represents the third state of the semi-Markov
describing the model and denoted by (2)

Let τ∗0 , τ
∗
1 , τ

∗
2 , . . . denote the instants which the state of the system changes, where

τ∗0 = 0 and let {Y (t) : t ≥ 0} be a stochastic process with state space S = {0, 1, 2}. This
process keeps constant values on the half intervals [τ∗n, τ

∗
n+1) and is continuous from the

right. Therefore, it is not a semi-Markov process.

Let us define a new stochastic process as follows:

Assuming that τ0 = 0 and τn, n = 1, 2, . . . represent the instants when the components
of the system failed or the whole system renewal. The stochastic process {X(t) : t ≥ 0}
defined by

X(0) = 0, X(t) = Y (τn), τn ≤ t < τn+1, (3.1)

is a semi-Markov process and its kernel density is given by the following square matrix

[qij ] =

 0 0 q02
q10 q11 0
q20 q21 0

 (3.2)

It is well-known that, the semi-Markov process {X(t), t ≥ 0} is completely specified by
its semi-Markov kernel. Let us deduce the elements of the density semi-Markov kernel which
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describe the underlying reliability model as follows:

q02(t) =
d

dt
P{X(τn+1) = 2, ϑn+1 ≤ t|X(τn) = 0} =

d

dt
P{k ≤ t} = c(t)

q10(t) =
d

dt
P{X(τn+1) = 0, ϑn+1 ≤ t|X(τn) = 1}

=
d

dt
P{T ≤ t,Θ > T}+ P{Ē, T ≤ t,Θ < T}

=
d

dt

[∫ t

0

[1−H(t)]dF (t) + (1− θ0)

∫ t

0

H(x)dF (x)

]
= (1− θ0)f(t),

q11(t) =
d

dt
P{X(τn+1) = 1, ϑn+1 ≤ t|X(τn) = 1}

=
d

dt
P{E, T ≤ t,Θ > T} = θ0H(t)f(t)

q21(t) =
d

dt
P{X(τn+1) = 1, ϑn+1 ≤ t|X(τn) = 2} =

d

dt
P{E, T ≤ t} = θ0 f(t)

q20(t) =
d

dt
P{X(τn+1) = 0, ϑn+1 ≤ t|X(τn) = 2} =

d

dt
P{Ē, T ≤ t} = (1− θ0) f(t)

(3.3)
where Ē is the complementary event of E

It is well known that, some of the statistical distributions have a constant failure rate
such as the exponential distribution, and other distributions have increasing failure rates
such as linear failure rate distribution, and some others with decreasing failure rates such
as Weibull distribution with shape parameter does not exceed one and other distributions
with all of these types of failure rates on different periods of time such as those distributions
having failure rate of the bath-tub curve shape see for example Jackson (1969), Lai, et al.
(2001) and Lawless (2003). The generalized linear failure rate distribution having such these
properties.

Now, we assume that the lifetime of the active units have identically generalized linear
failure rate distribution with the parameters θ1, θ2 and θ3. Therefore, for θ1 > 0, θ2 > 0 and
θ3 > 0, distribution function of the lifetime T of the active units is given by

F (t; θ1, θ2, θ3) =
[
1− e−

(
θ1t+

1
2 θ2t

2
)]θ3

, t ≥ 0 (3.4)

and the probability density and hazard rate functions of the lifetime T of the active units
are given by

f(t; θ1, θ2, θ3) = θ3(θ1 + θ2 t) e
−
(
θ1t+

1
2 θ2t

2
)[
1− e−

(
θ1t+

1
2 θ2t

2
)]θ3−1

, t ≥ 0 (3.5)

and

h(t; θ1, θ2, θ3) =
θ3(θ1 + θ2 t) e

−
(
θ1t+

1
2 θ2t

2
)[
1− e−

(
θ1t+

1
2 θ2t

2
)]θ3−1

1−
[
1− e

−
(
θ1t+

1
2 θ2t

2
)]θ3

, t ≥ 0 (3.6)
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respectively.
Substituting (3.5) into the densities (3.3) of the semi-Markov kernel density, we get

q10(t | θ) = θ3(1− θ0H(t))(θ1 + θ2 t) e
−
(
θ1t+

1
2 θ2t

2
)[
1− e−

(
θ1t+

1
2 θ2t

2
)]θ3−1

,

q11(t | θ) = θ0θ3 H(t) (θ1 + θ2 t) e
−
(
θ1t+

1
2 θ2t

2
)[
1− e−

(
θ1t+

1
2 θ2t

2
)]θ3−1

q20(t | θ) = θ3(1− θ0) (θ1 + θ2 t) e
−
(
θ1t+

1
2 θ2t

2
)[
1− e−

(
θ1t+

1
2 θ2t

2
)]θ3−1

,

q21(t | θ) = θ0θ3 (θ1 + θ2 t) e
−
(
θ1t+

1
2 θ2t

2
)[
1− e−

(
θ1t+

1
2 θ2t

2
)]θ3−1

,


(3.7)

where θ0, θ1, θ2, θ3 > 0, t,≥ 0.

4. PARAMETER ESTIMATION

In this section, we use the maximum likelihood procedure to derive point and interval
estimates of the unknown vector parameters θ = (θ0, θ1, θ2, θ3) included in the quadratic
failure rate reliability model.

4.1 Maximum likelihood procedure

Suppose that z denotes the observations {(i0, t0), (i1, t1), . . . , (in, tn)} of two dimen-
sional random vector of variables, {(ξ0, ϑ0), (ξ1, ϑ1), . . . , (ξn, ϑn)} where i0, i1, . . . , tn and
t0, t1, . . . , tn ∈ [0,∞). Further, we assume that this observation is classified as follows:

Let
Aij = {k : ik−1 = i, ik = j, k = 1, 2, . . . , n} (4.1)

be the set of numbers of direct observed transition from the state i to the state j and nij is
the cardinal number of the set Aij which represents the number of direct transitions from
the state i to state j . In the present case we find that

n02 + n10 + n11 + n20 + n21 = n (4.2)

Based on the above observation, the sample likelihood function L(z; θ) can be obtained as
follows:

Substituting the semi-Markov densities from (3.7) into (2.12), the sample likelihood
function L(z; θ) takes the form

L(z; θ) = C θn11+n21
0 (1−θ0)n20 θm3 W (θ0)

∏
i∈B

(θ1+θ2 ti) e
−
(
θ1ti+

1
2 θ2t

2
i

)[
1−e−

(
θ1ti+

1
2 θ2t

2
i

)]θ3−1

(4.3)
where

W (θ0) =
∏

i∈A10

[
1− θ0H(ti)

]
, C =

∏
i∈A02

c(ti),

B = A10 ∪A11 ∪A20 ∪A21, m = n10 + n11 + n20 + n21

 (4.4)
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Finally, the log of the sample likelihood function L can be written in the following form

L = (n11 + n21) ln θ0 + n20 ln(1− θ0) + lnW (θ0) +m ln θ3+∑
i∈B

ln
(
θ1 + θ2ti

)
−
∑
i∈B

(
θ1 ti +

1

2
θ2t

2
i

)
+ (θ3 − 1)

∑
i∈B

ln
[
1− Yi(θ1, θ2)]

]
 (4.5)

where Yi(θ1, θ2) = e−(θ1ti+
1
2 θ2t

2
i ).

The maximum likelihood estimators θ̂0, θ̂1, θ̂2 and θ̂3 are the values of θ0, θ1, θ2 and θ3,
respectively that maximize the sample likelihood L. Equivalently θ0, θ1, θ2 and θ3 maximize
the log sample likelihood since it is a monotone function of L(z, θ).

The maximum likelihood equations are given by :

∂L
∂θs

= 0, s = 0, . . . , 3. (4.6)

Using (4.9) and (4.10) the maximum likelihood equations are

∂L
∂θ0

=
n11 + n21

θ0
− n20

1− θ0
+

1

W (θ0)

dW (θ0)

dθ0
= 0,

∂L
∂θ1

=
∑
i∈B

1

θ1 + θ2ti
−

∑
i∈B

ti + (θ3 − 1)
∑
i∈B

[
tiYi(θ1, θ2)

1− Yi(θ1, θ2)

]
= 0,

∂L
∂θ2

=
∑
i∈B

ti
θ1 + θ2ti

− 1

2

∑
i∈B

t2i + (θ3 − 1)
∑
i∈B

[
t2iYi(θ1, θ2)

2[1− Yi(θ1, θ2)]

]
= 0,

∂L
∂θ3

=
m

θ3
+
∑
i∈B

ln
[
1− Yi(θ1, θ2)

]
= 0,

(4.7)

4.2 Important special cases

This subsection is devoted to study some important special cases. Such cases occur
when, both the time lengths of the repair periods of the units and the lifetimes of the active
units are exponentially, linear failure rate and Rayleigh random variables.

In order to obtain the first special case, the following assumptions are needed:

1. The distribution of the time lengths of the repair periods of the units satisfy the
condition: 1− θ0H(ti) = 1− θ0 for every i ∈ A10.

2. The lifetimes of the active units can be represented by identically exponential random
variables with parameter θ1. That is, θ2 = 0, and θ3 = 1

In this case, the maximum likelihood estimators are given by:

θ̂0 =
n22 + n12

m
, θ̂1 =

m

τ
, τ =

∑
i∈B

ti. (4.8)
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The second special case can be obtained by considering the following assumptions:

1. The distribution of the time lengths of the repair periods of the units satisfy the
condition: 1− θ0H(ti) = 1− θ0 for every i ∈ A10.

2. The lifetimes of the active units can be represented by identically linear failure rate
random variables with two parameters θ1 and θ2. That is, θ3 = 1

In this case, the maximum likelihood estimators are given by:

θ̂0 =
n22 + n12

m
, θ̂1 =

2m− θ̂2
∑

i∈B t
2
i

2τ
. (4.9)

where the estimator θ̂2 is the solution of the nonlinear equation

2
∑
i∈B

[
1

2m− θ̂2
∑

s∈B t
2
s + 2θ̂2

∑
i∈B

∑
s∈B tits

]
= 1 (4.10)

The third special case can be obtained by considering the following assumptions:

1. The distribution of the time lengths of the repair periods of the units satisfy the
condition: 1− θ0H(ti) = 1− θ0 for every i ∈ A10.

2. The lifetimes of the active units can be represented by identically Rayleigh random
variables with one parameter θ2.

In this case, the maximum likelihood estimators are given by:

θ̂0 =
n22 + n12

m
, θ̂2 =

2m∑
s∈B t

2
s

. (4.11)

5. ASYPTOTIC CONFIDENCE BOUNDS

Since the maximum likelihood estimators (θ̂0, θ̂1, θ̂2, θ̂3) of the unknown parameters
(θ0, θ1, θ2, θ3) cannot be derived in closed forms, we cannot get the exact confidence bounds
of the parameters. The idea is to use the large sample approximation. The maximum
likelihood estimators of θ can be treated as being approximately multi-normal with mean
θ = (θ0, θ1, θ2, θ3) and variance-covariance matrix equal to the inverse of the expected infor-
mation matrix. That is,(

(θ̂0 − θ0), (θ̂1 − θ1), (θ̂2 − θ2), (θ̂3 − θ3)
)
→ N4

(
0, I−1(θ̂)

)
, (5.1)

where I−1
(
θ̂
)
is the variance-covariance matrix of the unknown parameters θ. The element

Iij(θ̂), i, j = 0, 1, 2, 3, of the 4× 4 matrix I−1 is given by

Iij(θ̂) = − Lθiθj

∣∣
θ=θ̂

. (5.2)
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From expression (4.11), the second partial derivatives of the log-likelihood function are found
to be

∂2L
∂θ20

= −n11 + n21
θ20

− n20
(1− θ0)2

− 1

W 2(θ0)

(
∂W (θ0)

∂θ0

)2

+
1

W (θ0)

∂2W (θ0)

∂θ20
,

∂2W (θ0)

∂θ0θ1
= 0,

∂2W (θ0)

∂θ0θ2
= 0,

∂2W (θ0)

∂θ0θ3
= 0,

∂2L
∂θ21

= −
∑
i∈B

1

(θ1 + θ2ti)2
− (θ3 − 1)

∑
i∈B

t2iYi
(1− Yi)2

,

∂2L
∂θ1∂θ2

= −
∑
i∈B

ti
(θ1 + θ2ti)2

− (θ3 − 1)
∑
i∈B

t3iYi
2(1− Yi)2

,

∂2L
∂θ1θ3

=
∑
i∈B

tiYi
2(1− Yi)

,
∂2L
∂θ22

= −
∑
i∈B

t2i
(θ1 + θ2ti)2

+ (θ3 − 1)
∑
i∈B

t4iYi
4(1− Yi)2

,

∂2L
∂θ2θ3

= −
∑
i∈B

t2iYi
(1− Yi)

,
∂2L
∂θ23

= −
∑
i∈B

t2i
(θ1 + θ2ti)2

+ (θ3 − 1)
∑
i∈B

t4iYi
4(1− Yi)2

,

(5.3)
Therefore, the approximate 100(1−α)% two sided confidence intervals for (θ0, θ1, θ2, θ3) are
respectively, given by

θ̂s ± Zα/2

√
I−1
ss (θ̂s), s = 0, . . . , 3 (5.4)

Here Zα
2
is the upper 100

α

2
-th percentile of the standard normal distribution.

From above results, we can deduce the following special cases:

Exponential case: setting θ2 = 0, θ3 = 1, from (5.3) and (5.4), we get the approximate
100(1− α)% two sided confidence intervals for θ0 and θ1 respectively

θ̂0 ±
θ̂0(1− θ̂0)Zα/2√

(n11 + n21)(1− θ̂0)2 + (n10 + n20)θ̂20

, θ̂1 ±
θ̂1 Zα/2√

m
(5.5)

Linear failure rate case: setting θ3 = 1, from (5.3) and (5.4), we get the approximate
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100(1− α)% two sided confidence intervals for θ0, θ1 and θ2 respectively

θ̂0 ±
θ̂0(1− θ̂0)√

(n11 + n21)(1− θ̂0)2 + (n10 + n20)θ̂20

Zα/2,

θ̂1 ±


∑
i∈B

t2i

(θ̂1 + θ̂2ti)2∑
i∈B

ti

(θ̂1 + θ̂2ts)2

∑
i∈B

ts

(θ̂1 + θ̂2ts)2
−

∑
s∈B

1

(θ̂1 + θ̂2ts)2

∑
i∈B

t2i

(θ̂1 + θ̂2ti)2


1
2

Zα/2,

θ̂2 ±


∑
i∈B

1

(θ̂1 + θ̂2ti)2∑
s∈B

1

(θ̂1 + θ̂2ts)2

∑
i∈B

t2i

(θ̂1 + θ̂2ti)2
−

∑
i∈B

ti

(θ̂1 + θ̂2ts)2

∑
i∈B

ts

(θ̂1 + θ̂2ts)2


1
2

Zα/2.

(5.6)

Next, we discuss in details the reliability function of our standby system with repair
that consists of one active unit, an identical spare, a switch, and a repair facility.

6. FIRST PASSAGE AND SYSTEM RELIABILITY

In this section, we will discuss the system reliability function of standby system with
repair using semi-Markov procedure. The reliability function of the system will be derived.
The distribution of the first passage time will be obtained.

6.1 The distribution of the first passage

Now, we will define the distribution first passage time. In order to define the first passage
time, we should find an accurate answer for the question ”how many transitions will the
process take to reach state j for the first time if the system is in state i at time zero”. The
first passage time of the continuous-time semi-Markov process can be measured in time or
in terms of the number of transitions. We will obtain the distribution FiA(t) of the first
passage time from the state i to a state in a subset A ⊂ S given that state i was entered at
time zero and zeroth transition.

Assuming that A ⊂ S = {0, 1, 2} and Ā = S −A, we introduce the following notations

∆A = inf{n ∈ N : X(τn) ∈ A ⊂ S}, (6.1)

and

fiA(n) = P{∆A = n|X(0) = i}, TA = τ∆A, (6.2)

Therefore, the distribution function of the first passage time FiA(t) is given by

FiA(t) = P{TA ≤ t|X(0) = i}, i ∈ Ā, (6.3)
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The function FiA(t) represents the distribution of the first passage time of the semi-Markov
process {X(t) : t ≥ 0}, from the state i ∈ Ā to state in the subset A.

6.2 The system reliability function

Now, we will define, the first and the second moments of the first passage time distribu-
tion as follows

Φ̄iA =

∫ ∞

0

tdFiA(t), and, Φ̄2
iA =

∫ ∞

0

t2dFiA(t), (6.4)

If we assumed that, A denotes the subset of the failed states of the system and i ∈ Ā is an
initial operating state such that P{X(0) = i} = 1, then the random variable TA represents
the lifetime or the time to failure of the reliability system. That is, the reliability of this
system is

R(t) = 1− FiA(t), t ≥ 0, (6.5)

Next, we define the first and second moments of the semi-Markov kernel as reliability
characteristics of the system as follows:

q̄ik =

∫ ∞

0

tqik(t)dt, q̄
2
ik =

∫ ∞

0

t2qik(t)dt, ḡi =

∫ ∞

0

tdGi(t)dt, ḡ
2
i =

∫ ∞

0

t2dGi(t)dt (6.6)

Following theorem can be used to get an integral equations and two linear algebraic systems
of equation for the first passage distribution function FiA(t), the first moment Φ̄iA and the
second moment Φ̄2

iA, i ∈ Ā.

Theorem 6.1 If the following three conditions

1. fiA = 1 ∀ i ∈ Ā ⊂ S;

2. ∃ d > 0 s.t. q̄2ij < d, ∀ i, j ∈ S,

3.
∑∞

k=1 k
2fiA(k) <∞ ∀, i ∈ Ā

 (6.7)

are fulfilled
Then the distribution function FiA(t), the mean Φ̄iA and the second moments Φ̄2

iA, i ∈ Ā
are only the solution of the following system:

FiA(t) =
∑

j∈AQ
(k)
ij (t) +

∑
k∈Ā

∫ t

0
FkA(t− u)dQik(u), i ∈ Ā

ḡi = Φ̄iA −
∑

k∈Ā pikΦ̄ik, i ∈ Ā

ḡ2i = Φ̄2
iA −

∑
k∈Ā pikΦ̄

2
ik − 2

∑
k∈Ā q̄ikΦ̄kA, i ∈ Ā,

 (6.8)

which consist of a system of integral equations and two linear algebraic systems of equations.
The system of integral equations is equivalent to its Laplace-Stieltjes system

φ̃iA(s) =
∑
j∈A

q̃ij(s) +
∑
k∈Ā

q̃ik(s)φ̃kA(s), i ∈ Ā (6.9)



14 Parameters Estimation of Generalized Linear failure rate Semi-Markov Reliability Models

where

φ̃iA(s) =

∫ ∞

0

e−stdFiA(t), q̃ij(s) =

∫ ∞

0

e−stdQij(t) (6.10)

For underling system, we find that A = {0} and Ā = {1, 2}. From the solution of the system
(6.9), we have

φ̃10(s) =
q̃10(s)

1− q̃11(s)
, φ̃20(s) = q̃20(s) +

q̃21q̃10
1− q̃11(s)

(6.11)

Using the Laplace transformation, the system reliability function (6.5) of the underling
reliability system is given by

R̃(s) =
1− φ̃20(s)

s
, (6.12)

From the system of equations (6.8), we can get

Φ̄20 = ḡ2 +
p21ḡ1
1− p11

, (6.13)

For the present system ḡ1 and ḡ2 are the average of the lifetimes of the active units. That is

ḡ1 = ḡ2 = E(T ) =

∫ ∞

0

tf(t) dt
(6.14)

6.3 Standby system with exponential lifetime

In this subsection, we will obtained the Laplace-Stieljes of the reliability function. Some
semi-Markov reliability characteristics such as the first and second moments of the kernel
density will be obtained.

For the exponential distribution the lifetimes of the active units , we find that:

ḡ1 = ḡ2 = E(T ) =
1

θ1
, p21 = θ0 (6.15)

Substituting from (6.15) into (6.13) we obtain a simple form of the mean lifetime of the
underling reliability system

E(TA|X(0) = 2) = Φ20 =
1

θ1
+

θ0
θ1(1− p11)

(6.16)

where

p11 = θ0θ1

∫ ∞

0

H(u) e−θ1u du. (6.17)

After observation of a piece of the considered semi-Markov process realization, we can sub-
stitute θ0 = θ̂0 and θ1 = θ̂1.
6.4 Numerical simulation

In this subsection, we discuss some numerical example for the maximum likelihood
estimators of the unknown parameters θ0, θ1, θ2 and θ3. The following table displays the
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mean square errors (MSE) of the parameters against the different values of the sample size.

n MSE(θ1) MSE(θ2) MSE(θ3) n MSE(θ1) MSE(θ2) MSE(θ3)
40 2.50 1.50 3.34 350 0.35 0.21 0.32
80 1.26 0.81 1.54 400 0.32 0.20 0.31
130 0.82 0.56 0.98 450 0.30 0.19 0.29
150 0.75 0.55 0.95 500 0.25 0.14 0.25
200 0.52 0.37 0.79 550 0.23 0.13 0.23
250 0.39 0.34 0.58 600 0.21 0.12 0.22
300 0.45 0.33 0.45 700 0.17 0.11 0.21

where the assumed values of the parameters are θ0 = 0.5, θ1 = 1.5, θ2 = 3.0 and the partial
of the sample size are such that n11 = n21 = n10 = n20. Further the distribution of the
length of the repair time is such that H(tl) = 1, ∀l ∈ A10. Note that the mean square error
of the parameter θ0 is zero for all different values of the sample size.

7. CONCLUSION

In this paper, we have used the stochastic analysis to discuss an important semi-Markov
reliability system. Also the likelihood procedure is employed to derive estimators of the
unknown parameters include in this semi-Markov reliability system. The distribution of
the first passage time is discussed. The reliability function of this model is derived. Many
important special cases are derived.
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