난관수종액이 생쥐 배아발달에 미치는 영향

Effect of Human Hydrosalpingeal Fluid on the Development of Mouse Embryo

  • 박준철 (계명대학교 의과대학 산부인과교실) ;
  • 김정아 (계명대학교 의과대학 산부인과교실) ;
  • 김동자 (시카고의과대학 병리학교실) ;
  • 배진곤 (계명대학교 의과대학 산부인과교실) ;
  • 김종인 (계명대학교 의과대학 산부인과교실) ;
  • 이정호 (계명대학교 의과대학 산부인과교실)
  • Park, Joon-Cheol (Department of Obstetrics and Gynecology, Keimyung University School of Medicine) ;
  • Kim, Jeong-A (Department of Obstetrics and Gynecology, Keimyung University School of Medicine) ;
  • Kim, Dong-Ja (Department of Pathology, Rosalind Franklin University of Chicago Medical School) ;
  • Bae, Jin-Gon (Department of Obstetrics and Gynecology, Keimyung University School of Medicine) ;
  • Kim, Jong-In (Department of Obstetrics and Gynecology, Keimyung University School of Medicine) ;
  • Rhee, Jeong-Ho (Department of Obstetrics and Gynecology, Keimyung University School of Medicine)
  • 투고 : 2010.01.27
  • 심사 : 2010.05.14
  • 발행 : 2010.06.30

초록

목 적: 난관수종액내의 사이토카인 농도를 측정하고, 사이토카인 농도가 다른 난관수종액을 이용하여 생쥐 배아 발생에 미치는 영향을 비교하고자 하였다. 연구방법: 난관수종액은 자궁난관 조영술에서 난관수종이 진단되어 복강경을 통한 난관 절제술을 시행하는 경우 난관 절제술 전에 난관으로부터 채취한 다음 3,000 rpm에서 10분간 원심분리시킨 후 상층액만을 $-20^{\circ}C$에서 보관하였다. 난관수종액의 사이토카인의 조성 및 농도를 확인하기 위하여 interleukin (IL)-$1{\alpha}$, IL-$1{\beta}$, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-$\alpha$, interferon (IFN)-$\gamma$, vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), monocyte chemotactic protein (MCP)-1 등을 ELISA 방법으로 측정하였다. 기본 배양액에 난관수종액을 5%, 10%, 30%의 비율로 첨가하여 각 군별로 배반포로의 발달을 관찰하였다. 결 과: 난관수종액내에서 IL-$1{\alpha}$, IL-$1{\beta}$, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-$\alpha$, IFN-$\gamma$, VEGF, EGF, MCP-1가 검출되었으며, 그 농도에 있어서는 큰 차이를 보였다. 정상 혈청 농도에 비하여 난관수종액-1은 IL-6, IL-10이 증가되어 있었고, 난관 수종액-2는 IFN-$\gamma$, MCP-1 및 VEGF가 증가되어 있었다. 각 난관수종액의 Th1/Th2 비는 HSF-1의 경우 IFN-$\gamma$:IL-10이 3.69로 정상인 데 비하여 HSF-2의 경우 IFN-$\gamma$:IL-10이 61.14로 크게 증가되어 있었다. 난관수종액을 포함하지 않는 배양액에서는 배반포기 발달률은 76.7%이었고, 난관수종액-1군은 74%로 대조군과 차이를 보이지 않았지만, 난관수종액-2군의 경우 27.7%로서 대조군 및 난관수종액-1군과도 유의한 차이를 보였다. 난관수종액-1의 경우 난관수종액 농도에 따른 차이는 없었으며, 난관수종액-2군의 경우 농도에 증가함에 따라 배반포로의 발달이 감소하기는 하였지만 통계적으로 유의하지는 않았다. 결 론: 난관수종액마다 사이토카인의 조성이 다르며 이에 따라 생쥐 배아발달에 미치는 영향이 다를 수 있다. 염증성 사이토카인이 증가된 난관수종액이 배아발달에 악영향을 미칠 것으로 추정된다. 특정 사이토카인에 의한 작용을 규명하기는 위해서는 향후 지속적인 연구가 필요할 것으로 생각된다.

Objective: The aim of this study was to measure the concentrations of cytokines contained in the hydrosalpingeal fluid and to evaluate the effect on the mouse embryo development with the different cytokine concentration. Methods: The hydrosalpingeal fluids (HSF) were collected during the surgery for hydrosalpinx which was confirmed by hysterosalphingogram. The cytokines in HSF including interleukin (IL)-$1{\alpha}$, IL-$1{\beta}$, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-$\alpha$, Interferon-$\gamma$ (IFN-$\gamma$), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), monocyte chemotactic protein-1 (MCP-1) were measured by ELISA method. HSF were added up to culture media with 5%, 10%, and 30% concentrations. The blastulation rates were compared. Results: IL-$\alpha$, IL-$1{\beta}$, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-$\alpha$, IFN-$\bamma$, VEGF, EGF, and MCP-1 were detected, but the concentrations were different from each sample. IL-6 and IL-10 were increased in HSF-1 group, and IFN-$\gamma$, MCP-1, VEGF were increased in HSF-2 compared with normal serum range. The Th1/Th2 ratio of HSF-2 (IFN-$\gamma$:IL10) was highly elevated to 61.64, compared with that of HSF-1 (3.69). The blastulation rate was significantly decreased in HSF-2 group (27.7%) compared those of the HSF-1 group (74%) and control group (76.7%). It showed the trend that the blastulation rate was decreased depending on the concentration HSF of culture media in HSF-2 group, but it was not statistically significant. Conclusion: The composition and concentration of cytokines in each HSF were different, and increased proinflammatory cytokines in HSF might be associated with poor embryonic development. Further study will be needed about the effect of each cytokines in HSF.

키워드

참고문헌

  1. Strandell A, Lindhard A. Why does hydrosalpinx reduce fertility? The importance of hydrosalpinx fluid. Hum Reprod 2002; 17: 1141-5. https://doi.org/10.1093/humrep/17.5.1141
  2. Zeyneloglu HB, Arici A, Olive DL. Adverse effects of hydrosalpinx on pregnancy rates after in vitro fertilizationembryo transfer. Fertil Steril 1998; 70: 492-9. https://doi.org/10.1016/S0015-0282(98)00200-3
  3. Camus E, Poncelet C, Goffinet F, Wainer B, Merlet F, Nisand I, et al. Pregnancy rates after in-vitro fertilization in cases of tubal infertility with and without hydrosalpinx: a meta-analysis of published comparative studies. Hum Reprod 1999; 14: 1243-9. https://doi.org/10.1093/humrep/14.5.1243
  4. Strandell A, Lindhard A, Waldenstrom U, Thorburn J, Janson PO, Hamberger L. Hydrosalpinx and IVF outcome: a prospective, randomized multicentre trial in Scandinavia on salpingectomy prior to IVF. Hum Reprod 1999; 14: 2762-9. https://doi.org/10.1093/humrep/14.11.2762
  5. Strandell A, Lindhard A, Waldenstrom U, Thorburn J. Hydrosalpinx and IVF outcome: cumulative results after salpingectomy in a randomized controlled trial. Hum Reprod 2001; 16: 2403-10. https://doi.org/10.1093/humrep/16.11.2403
  6. Vandromme J, Chasse E, Lejeune B, Van Rysselberge M, Delvigne A, Leroy F. Hydrosalpinges in in-vitro fertilization: an unfavourable prognostic feature. Hum Reprod 1995; 10: 576-9. https://doi.org/10.1093/oxfordjournals.humrep.a135992
  7. Lass A, Ellenbogen A, Croucher C, Trew G, Margara R, Becattini C, et al. Effect of salpingectomy on ovarian response to superovulation in an in vitro fertilization-embryo transfer program. Fertil Steril 1998; 70: 1035-8. https://doi.org/10.1016/S0015-0282(98)00357-4
  8. Gelbaya TA, Nardo LG, Fitzgerald CT, Horne G, Brison DR, Lieberman BA. Ovarian response to gonadotropins after laparoscopic salpingectomy or the division of fallopian tubes for hydrosalpinges. Fertil Steril 2006; 85: 1464-8. https://doi.org/10.1016/j.fertnstert.2005.10.036
  9. Ozmen B, Diedrich K, Al-Hasani S. Hydrosalpinx and IVF: assessment of treatments implemented prior to IVF. Reprod Biomed Online 2007; 14: 235-41. https://doi.org/10.1016/S1472-6483(10)60792-4
  10. Yang HS. Effect of human hydrosalpinx fluid on mouse in in vitro fertilization and embryo development. Korean J Obstet Gynecol 2001; 44: 1225-31.
  11. Koong MK, Jun JH. Adverse effect of human hydrosalpingeal fluid on the developmentof mouse embryo. Korean J Obstet Gynecol 1997; 40: 514-7.
  12. Koong MK, Jun JH, Song SJ, Lee HJ, Song IO, Kang IS. A second look at the embryotoxicity of hydrosalpingeal fluid: an in-vitro assessment in a murine model. Hum Reprod 1998; 13: 2852-6. https://doi.org/10.1093/humrep/13.10.2852
  13. Strandell A, Sjogren A, Bentin-Ley U, Thorburn J, Hamberger L, Brannstrom M. Hydrosalpinx fluid does not adversely affect the normal development of human embryos and implantation in vitro. Hum Reprod 1998; 13: 2921-5. https://doi.org/10.1093/humrep/13.10.2921
  14. Granot I, Dekel N, Segal I, Fieldust S, Shoham Z, Barash A. Is hydrosalpinx fluid cytotoxic? Hum Reprod 1998; 13: 1620 -4. https://doi.org/10.1093/humrep/13.6.1620
  15. Barmat LI, Nasti K, Yang X, Spandorfer S, Kowalik A, El-Roeiy A. Are cytokines and growth factors responsible for the detrimental effects of hydrosalpingeal fluid on pregnancy rates after in vitro fertilization-embryo transfer? Fertil Steril 1999; 72: 1110-2. https://doi.org/10.1016/S0015-0282(99)00422-7
  16. Kwak-Kim JY, Chung-Bang HS, Ng SC, Ntrivalas EI, Mangubat CP, Beaman KD, et al. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum Reprod 2003; 18: 767-73. https://doi.org/10.1093/humrep/deg156
  17. Chen CD, Yang JH, Lin KC, Chao KH, Ho HN, Yang YS. The significance of cytokines, chemical composition, and murine embryo development in hydrosalpinx fluid for predicting the IVF outcome in women with hydrosalpinx. Hum Reprod 2002; 17: 128-33. https://doi.org/10.1093/humrep/17.1.128
  18. Strandell A, Thorburn J, Wallin A. The presence of cytokines and growth factors in hydrosalpingeal fluid. J Assist Reprod Genet 2004; 21: 241-7. https://doi.org/10.1023/B:JARG.0000042009.93520.15
  19. Blazar AS, Hogan JW, Seifer DB, Frishman GN, Wheeler CA, Haning RV. The impact of hydrosalpinx on successful pregnancy in tubal factor infertility treated by in vitro fertilization. Fertil Steril 1997; 67: 517-20. https://doi.org/10.1016/S0015-0282(97)80079-9
  20. Cohen MA, Lindheim SR, Sauer MV. Hydrosalpinges adversely affect implantation in donor oocyte cycles. Hum Reprod 1999; 14: 1087-9. https://doi.org/10.1093/humrep/14.4.1087
  21. Meyer WR, Castelbaum AJ, Somkuti S, Sagoskin AW, Doyle M, Harris JE, et al. Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod 1997; 12: 1393-8. https://doi.org/10.1093/humrep/12.7.1393
  22. Daftary GS, Taylor HS. Hydrosalpinx fluid diminishes endometrial cell HOXA10 expression. Fertil Steril 2002; 78: 577-80. https://doi.org/10.1016/S0015-0282(02)03306-X
  23. Simon C, Piquette GN, Frances A, Polan ML. Localization of interleukin-1 type I receptor and interleukin-1 beta in human endometrium throughout the menstrual cycle. J Clin Endocrinol Metab 1993; 77: 549-55. https://doi.org/10.1210/jc.77.2.549
  24. Sawin SW, Loret de Mola JR, Monzon-Bordonaba F, Wang CL, Feinberg RF. Hydrosalpinx fluid enhances human trophoblast viability and function in vitro: implications for embryonic implantation in assisted reproduction. Fertil Steril 1997; 68: 65-71. https://doi.org/10.1016/S0015-0282(97)81477-X
  25. Lee JA, Choi BC, Byun HG, Kim JW, Han JR, Yoo GJ, et al. Implication for early implantation failure in women with hydrosalpinx: hydrosalpingeal fluid inhibits trophoblast cell proliferation in vitro culture system. Korean J Obstet Gynecol 2000; 43: 1344-8.
  26. Yui J, Garcia-Lloret M, Wegmann TG, Guilbert LJ. Cytotoxicity of tumour necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts. Placenta 1994; 15: 819-35. https://doi.org/10.1016/S0143-4004(05)80184-5
  27. Kawamura K, Kawamura N, Kumagai J, Fukuda J, Tanaka T. Tumor necrosis factor regulation of apoptosis in mouse preimplantation embryos and its antagonism by transforming growth factor alpha/phosphatidylionsitol 3-kinase signaling system. Biol Reprod 2007; 76: 611-8. https://doi.org/10.1095/biolreprod.106.058008
  28. Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: key pieces of the development puzzle. Science 1994; 266: 1508-18. https://doi.org/10.1126/science.7985020
  29. Pijnenborg R, Luyten C, Vercruysse L, Keith JC Jr, Van Assche FA. Cytotoxic effects of tumour necrosis factor (TNF)-alpha and interferon-gamma on cultured human trophoblast are modulated by fibronectin. Mol Hum Reprod 2000; 6: 635-41. https://doi.org/10.1093/molehr/6.7.635
  30. Garcia-Lloret MI, Yui J, Winkler-Lowen B, Guilbert LJ. Epidermal growth factor inhibits cytokine-induced apoptosis of primary human trophoblasts. J Cell Physiol 1996; 167: 324-32. https://doi.org/10.1002/(SICI)1097-4652(199605)167:2<324::AID-JCP17>3.0.CO;2-7
  31. Choi YK, Kwak-Kim J. Cytokine gene polymorphisms in recurrent spontaneous abortions: a comprehensive review. Am J Reprod Immunol 2008; 60: 91-110. https://doi.org/10.1111/j.1600-0897.2008.00602.x
  32. Wu MY, Chen SU, Chao KH, Chen CD, Yang YS, Ho HN. Mouse embryo toxicity of IL-6 in peritoneal fluids from women with or without endometriosis. Acta Obstet Gynecol Scand 2001; 80: 7-11.
  33. Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod 2009; 80: 848-59. https://doi.org/10.1095/biolreprod.108.073353
  34. Berkowitz RS, Hill JA, Kurtz CB, Anderson DJ. Effects of products of activated leukocytes (lymphokines and monokines) on the growth of malignant trophoblast cells in vitro. Am J Obstet Gynecol 1988; 158: 199-203. https://doi.org/10.1016/0002-9378(88)90810-1
  35. Hill JA, Haimovici F, Anderson DJ. Products of activated lymphocytes and macrophages inhibit mouse embryo development in vitro. J Immunol 1987; 139: 2250-4.
  36. Zou GM, Reznikoff-Etievant MF, Hirsch F, Milliez J. IFNgamma induces apoptosis in mouse embryonic stem cells, a putative mechanism of itsembryotoxicity. Dev Growth Differ 2000; 42: 257-64. https://doi.org/10.1046/j.1440-169x.2000.00511.x
  37. Cameo M, Fontana V, Cameo P, Vauthay LG, Kaplan J, Tesone M. Similar embryotoxic effects of sera from infertile patients and exogenous interferon-gamma on long-term in-vitro development of mouse embryos. Hum Reprod 1999; 14: 959-63. https://doi.org/10.1093/humrep/14.4.959
  38. Liu LP, Chan ST, Ho PC, Yeung WS. Human oviductal cells produce high molecular weight factor(s) that improves the development of mouse embryo. Hum Reprod 1995; 10: 2781-6. https://doi.org/10.1093/oxfordjournals.humrep.a135791