DOI QR코드

DOI QR Code

The Characteristic in Mg Alloy with Burning and Plasma Electrolyte Oxidation Surface Treatment

Mg Alloy의 Burning과 Plasma Electrolyte Oxidation 표면처리에 대한 연구

  • Yu, Jae-In (Department of Research and Development, Wisco Hitec Co. Ltd) ;
  • Choi, Soon-Don (School of Materials Science and Engineering, Yeungnam University) ;
  • Jang, Ho-Kyeoung (Department of Oriental Biomedical Engineering, Daegu Haany University)
  • 유재인 ((주)위스코하이텍 기업부설연구소) ;
  • 최순돈 (영남대학교 신소재공학부) ;
  • 장호경 (대구한의대학교 의공학과)
  • Received : 2010.07.02
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

The surface oxidation of magnesium was performed by burning and PEO treatment method. The scanning electron microscopy (SEM), EDS, and I-V characteristics have been applied to the study of the oxidation status. The sample formed by buring method shows weaker corrosion-resistant property than that by PEO method, but this shows more conducting property.

Plasma electrolyte oxidation (PEO) 표면처리된 Mg 합금을 scanning electron microscopy (SEM) 방법으로 표면에 형성된 산화 막을 조사 분석하였다. 측정은 상온에서 수행하였다. Burning 및 PEO 방식의 표면처리 방법을 통해 제작 된 시료의 산화막을 SEM, EDS 및 I-V 측정을 통해 분석하였다. 그 결과 burning 방식의 표면처리가 PEO보다 내식성이 떨어지는 단점이 있지만, 전도성이 부여되는 결과를 나타낸다.

Keywords

References

  1. Z. Shi, G. Song, and A. Atrens, Corros. Sci. 48, 1939 (2006). https://doi.org/10.1016/j.corsci.2005.08.004
  2. H. Duan, K. Du, C. Yan, and F. Wang, Electrochim. Acta 51, 2898 (2006). https://doi.org/10.1016/j.electacta.2005.08.026
  3. Ostrovsky, Ilya, Patent PCT/IL02/00513 (2003).
  4. O. Yasuhiro, S. Goji, H. Koto, and H. Minoru, Patent PCT/JP03/02981 (2003).
  5. Z. Shi, G. Song, and A. Atrens, Corros. Sci. 47, 2760 (2005). https://doi.org/10.1016/j.corsci.2004.11.004
  6. V. Birss, S. Xia, R. Yue, G. Richard, and Rateick Jr., J. Electrochem. Soc. 151, (2004) B1. https://doi.org/10.1149/1.1629095
  7. D. Khaselev, J. Weiss, and Yahalom, Corros. Sci. 43, 1295 (2001). https://doi.org/10.1016/S0010-938X(00)00116-5
  8. R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, Surf. Coat. Technol. 200, 1580 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.092
  9. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol. 122, 2 (1999).
  10. A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, J. Appl. Phys. 36, 2110 (2003).
  11. M. Stern and A. L. Geary, J. Electrochem. Soc. 104, 56 (1957). https://doi.org/10.1149/1.2428496
  12. W. Li and D. Y. Li, Acta Mater. 54, 445 (2006). https://doi.org/10.1016/j.actamat.2005.09.017
  13. H. H. Wu, H. B. Wang, B. Y. Long, B. H. Long, Z. S. Jin, N. D. Wang, F. G. Yu, and D. M. Bi, Appl. Surf. Sci. 252, 1545 (2005). https://doi.org/10.1016/j.apsusc.2005.02.124
  14. W. B. Xue, C. Wang, Z. W. Deng, R. Y. Chen, Y. L. Li, and T. H. Zhang, J. Phys.-Condens. Matter 14, 10947 (2002). https://doi.org/10.1088/0953-8984/14/44/407
  15. X. Nie, E. I. Meletis, J. C. Jiang, A. Leyland, A. L. Yerokhin, and A. Matthews, Surf. Coat. Technol. 149, 245 (2002). https://doi.org/10.1016/S0257-8972(01)01453-0
  16. J. Tian, Z. Z. Luo, S. K. Qi, and X. J. Sun, Surf. Coat. Technol. 154, 1 (2002). https://doi.org/10.1016/S0257-8972(01)01671-1
  17. T.B. Wei, F. Y. Yan, and J. Tian, J. Alloy. Compd. 389, 169 (2005). https://doi.org/10.1016/j.jallcom.2004.05.084
  18. L. R. Krishna, A. S. Purnima, and G. Sundararajan, Wear 261, 1095 (2006). https://doi.org/10.1016/j.wear.2006.02.002
  19. X. Nie, L. Wang, E. Konca, and A. T. Alpas, Surf. Coat. Technol. 188-89, 207 (2004). https://doi.org/10.1016/j.surfcoat.2004.08.025
  20. W. B. Xue, X. L. Wu, X. J. Li, and H. Tian, J. Alloy. Compd. 425, 302 (2006). https://doi.org/10.1016/j.jallcom.2006.01.035
  21. Z. P. Yao, Z. H. Jiang, X. H. Wu, X. T. Sun, and Z. D. Wu, Surf. Coat. Technol. 200, 2445 (2005). https://doi.org/10.1016/j.surfcoat.2004.08.188
  22. 강병창, 부진효, 한국진공학회 16, 322 (2007).