공동(air cavity)의 존재 시 실험적 선량분포와 치료계획상의 선량분포 비교

Comparison of Experimental and Radiation Therapy Planning (RTP) Dose Distributions on Air Cavity

  • 김연래 (춘해보건대학 방사선과) ;
  • 서태석 (가톨릭대학교 의과대학 의공학교실) ;
  • 고신관 (을지대학교 보건과학대학 방사선학과) ;
  • 이정우 (건국대학교병원 방사선종양학과)
  • Kim, Yon-Lae (Department of Radiologic Technology, Choonhae College of Health Sciences) ;
  • Suh, Tae-Suk (Department of Biomedical Engineering, The Catholic University of Korea) ;
  • Ko, Shin-Gwan (Department of Radiological Science, College of Health Science Eulji Univ.) ;
  • Lee, Jeong-Woo (Department of Radiation Oncology, Konkuk University Medical Center)
  • 투고 : 2009.12.29
  • 심사 : 2010.07.13
  • 발행 : 2010.09.30

초록

고 에너지 광자선 치료 시 공동의 존재로 인한 실험적 선량분포와 치료계획상의 선량분포의 변화를 비교, 평가 하고자 하였으며, 선형가속기의 6 MV 광자선을 이용해서 폴리스틸렌 팬텀, 자체 제작한 아크릴 팬텀으로 공동을 만들고 표면에서 공동까지의 거리는 3 cm로 하고 선원-측정기간 거리는 100 cm로 고정하였고 공동의 크기는 가로 $\times$ 세로 $\times$ 높이로 정하였다. 공동의 넓이, 높이, 존재 유무, 그리고 조사면과 공동의 크기비율에 따른 깊이에 대한 선량변화를 평판형전리함과 미소전류계를 이용하여 측정하였다. 치료계획상의 선량분포는 불균질 보정을 하고 치료계획을 하여 비교하였다. 그 결과 공동의 넓이가 커짐에 따라 선량은 점차 감소하였다. 공동의 존재 시에, 공동후면 이후 깊이선량은 공동의 비존재시보다 크게 나타났다. 공동의 크기를 $5{\times}5{\times}3\;cm^3$로 고정했을 때 조사면이 $4{\times}4\;cm^2$, $5{\times}5\;cm^2$, $6{\times}6\;cm^2$일 경우에 rebuild-up이 일어났다. 그러나 조사면이 $10{\times}10\;cm^2$에서는 선량감소만이 나타났다. 또한 조사면을 $5{\times}5\;cm^2$로 고정했을 때, 공동의 넓이가 $4{\times}4\;cm^2$, $5{\times}5\;cm^2$일 경우에는 rebuild-up현상이 일어났지만, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$일 경우에는 일어나지 않았다. 모든 경우에서 치료계획상의 선량분포에서 rebuild-up 현상이 나타나지 않았다. 따라서 공동이 위치한 곳에 종양이 존재할 때는 치료계획상의 선량분포에 차이가 있으므로 주의를 할 필요가 있다.

This study is compared that the dose distribution by experimentation and radiation therapy planning (RTP) when the air cavity region was treated high energy photon. The dose measurements were performed with a 6 MV photon beam of linear accelerator. The polystyrene and self made acyl phantom were similar to tissue density of the human body. A parallel plate chamber was connected to an electrometer. The measurement setup was SCD (Source Chamber Distance) 100 cm and the distance of surface from air cavity was 3 cm. Absorbed dose of interface were measured by area and height. The percent depth dose were measured presence and absence of air cavity, depth according to a ratio of field size and air cavity size. The dose distribution on planning was expressed to do the inhomogeneity correction. As the area of air cavity was increased, the absorbed dose were gradually reduced. It was slightly increased, when the height of air cavity was changed from 0 cm to 0.5 cm. After the point, dose was decreased. In case of presence of air cavity, dose after distal air cavity interface was more great than absence of air cavity. The rebuild up by field size and area of air cavity occurred for field size, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$ and $6{\times}6\;cm^2$, with fixed on area of air cavity, $5{\times}5\;cm^2$. But it didn't occur at $10{\times}10\;cm^2$ field size. On the contrary, the field size was fixed on $5{\times}5\;cm^2$, rebuild up occurred in area of air cavity, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$. but, it did not occur for air cavity, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$. All of the radiation therapy planning were not occurred rebuild up. It was required to pay attention to treat tumor in air cavity because the dose distribution of planning was different from the dose distribution of patient.

키워드

참고문헌

  1. J. R Cunningham : Current and future development of tissue inhomogeneity corrections for photon beam clinical dosimetry with the use of CT. in Computed Tomography in Radiation Therapy, edited by C. C. Ling, C. C. Regers, and R, J, Morton(Raven, New York, 1983)
  2. B. H. Shahine, M. S. A. L. Al-Ghazi, and E. El-Khatib : Experimental evaluation of interface doses in the presence of air cavities compared with treatment planning algorithms. Med. Phys. 26. 350-355, 1999 https://doi.org/10.1118/1.598526
  3. J. W. Wong, and J. A. Purdy : On methods of inhomogeneity corrections for photon transport. Med. Phys. 17, 807-814, 1990 https://doi.org/10.1118/1.596555
  4. P. M. Ostwald, T. Kron, and C. Hamilton : Assessment of mucosal underdosing in larynx irradiation. Int. J. Radiant. Oncol. Phys. 36, 181-187, 1996
  5. E. R. Epp, A. L. Boyer, and K. P. Doppke : underdosing of lesions resulting from lack of electronic equilibrium in upper respiratory air cavities irradiated by 10 MV X-ray beams. Int. J. Radiat. Oncol. Biol. Phys. 2, 613-619, 1997
  6. Eric E. Klein et al : The influence of air cavities on interface doses for photon beams. Int. J. Rad. Oncol. Phys. 27, 419-427, 1993 https://doi.org/10.1016/0360-3016(93)90255-T
  7. M. E. J. Young and R. O. Kornelsen : Dose corrections for low density tissue inhomogeneities and air channels for 10 MV x-ray. Med. Phys. 10, 450-455, 1983 https://doi.org/10.1118/1.595392
  8. J. L. Beach, M. S. Mendiondo, and O. A. Mendiondo : A comparison of air-cavity inhomogeneity effects for cobalt 60, 6 and 10 MV x-ray beams. Med. Phys. 14, 140-144, 1987 https://doi.org/10.1118/1.596101
  9. E. E. Klein, K. W. Haryer, S. Thobejane, and K. Bertrand : The influence of air cavities in interface dose for photon beams. Int. J. Radiat. Oncol. Biol. Phys. 27, 419-427, 1993 https://doi.org/10.1016/0360-3016(93)90255-T
  10. Jiang G. L. et al : Maxillary Sinus Carcinomas : Natural History and Results of Postoperative Radiotherapy, Radiother. Oncol. 21, 193-200, 1991 https://doi.org/10.1016/0167-8140(91)90037-H