References
- M. Guedda & L. Veron: Bifurcation phenomena associated to the p-Laplace operator. Trans. Amer. Math. Soc. 215 (1988), 419-431.
-
M. Del Pino, M. Elgueta & R. Manasevich: A homotopic deformation alone p of a Leray- Schauder degree result and existence for
$({\mid}u^'{\mid}^{p-2}u^')^'$ +f(t,u)=0, u(0)=u(T)=0, P > 1,, J. Differential Equations 80 (1989), 1-13. https://doi.org/10.1016/0022-0396(89)90093-4 - M. Del Pino & R. Manasevich: Multiple solutions for the p-Laplacian under global nonresonance. Proc. Amer. Math. Soc. 112 (1991), 131-138.
- P. Binding, P. Drabek & Y. Huang: On the range of the p-Laplacian. Appl. Math. Lett. 10 (1997), 77-82.
- M. Del Pino & R. Manasevich: Global bifurcation from the eigenvalues of the p-Laplacian. J. Differential Equations 92 (1991), 226-251. https://doi.org/10.1016/0022-0396(91)90048-E
- P. Binding, P. Drabek & Y. Huang: On the Fredholm alternative for the p-Laplacian, Proc. Amer. Math. Soc. 125(1997) 3555-3559. https://doi.org/10.1090/S0002-9939-97-03992-0
- P. Drabek & R. Manasevich: On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian. Diff. Integral Equations 12 (1999), 773-788.
- M. Del Pino, P. Drabek & R. Manasevich: The Fredholm alternative at the first eigen-value for the one dimensional p-Laplacian. J. Differential Equations 151 (1999), 386-419. https://doi.org/10.1006/jdeq.1998.3506
- P. Drabek, P. Girg & R. Manasevich: Generic Fredholm alternative-type results for the one dimensional p-Laplacian. Nonlinear Differ. Eqns. Appl. 8(2001), 285-298. https://doi.org/10.1007/PL00001449
- R. Manasevich & P. Takac: On the Fredholm alternative for the p-Laplacian in one dimension. Proc. London Math. Soc. 84 (2002), 324-342. https://doi.org/10.1112/plms/84.2.324
- X. Yang: The Fredholm alternative for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 299 (2004), 494-507. https://doi.org/10.1016/j.jmaa.2004.03.077