SOLVABILITY FOR SOME DIRICHLET PROBLEM WITH P-LAPACIAN

  • Received : 2010.05.29
  • Accepted : 2010.08.18
  • Published : 2010.08.31

Abstract

We investigate the existence of the following Dirichlet boundary value problem $({\mid}u'\mid^{p-2}u')'\;+\;(p\;-\;1)[\alpha{\mid}u^+\mid^{p-2}u^+\;-\;\beta{\mid}u^-\mid^{p-2}u^-]$ = (p - 1)h(t), u(0) = u(T) = 0, where p > 1, $\alpha$ > 0, $\beta$ > 0 and ${\alpha}^{-\frac{1}{p}}\;+\;{\beta}^{-\frac{1}{p}}\;=\;2$, $T\;=\;{\pi}_p/{\alpha}^{\frac{1}{p}}$, ${\pi}_p\;=\; \frac{2{\pi}}{p\;sin(\pi/p)}$ and $h\;{\in}\;L^{\infty}$(0,T). The results of this paper generalize some early results obtained in [8] and [9]. Moreover, the method used in this paper is elementary and new.

Keywords

References

  1. M. Guedda & L. Veron: Bifurcation phenomena associated to the p-Laplace operator. Trans. Amer. Math. Soc. 215 (1988), 419-431.
  2. M. Del Pino, M. Elgueta & R. Manasevich: A homotopic deformation alone p of a Leray- Schauder degree result and existence for $({\mid}u^'{\mid}^{p-2}u^')^'$+f(t,u)=0, u(0)=u(T)=0, P > 1,, J. Differential Equations 80 (1989), 1-13. https://doi.org/10.1016/0022-0396(89)90093-4
  3. M. Del Pino & R. Manasevich: Multiple solutions for the p-Laplacian under global nonresonance. Proc. Amer. Math. Soc. 112 (1991), 131-138.
  4. P. Binding, P. Drabek & Y. Huang: On the range of the p-Laplacian. Appl. Math. Lett. 10 (1997), 77-82.
  5. M. Del Pino & R. Manasevich: Global bifurcation from the eigenvalues of the p-Laplacian. J. Differential Equations 92 (1991), 226-251. https://doi.org/10.1016/0022-0396(91)90048-E
  6. P. Binding, P. Drabek & Y. Huang: On the Fredholm alternative for the p-Laplacian, Proc. Amer. Math. Soc. 125(1997) 3555-3559. https://doi.org/10.1090/S0002-9939-97-03992-0
  7. P. Drabek & R. Manasevich: On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian. Diff. Integral Equations 12 (1999), 773-788.
  8. M. Del Pino, P. Drabek & R. Manasevich: The Fredholm alternative at the first eigen-value for the one dimensional p-Laplacian. J. Differential Equations 151 (1999), 386-419. https://doi.org/10.1006/jdeq.1998.3506
  9. P. Drabek, P. Girg & R. Manasevich: Generic Fredholm alternative-type results for the one dimensional p-Laplacian. Nonlinear Differ. Eqns. Appl. 8(2001), 285-298. https://doi.org/10.1007/PL00001449
  10. R. Manasevich & P. Takac: On the Fredholm alternative for the p-Laplacian in one dimension. Proc. London Math. Soc. 84 (2002), 324-342. https://doi.org/10.1112/plms/84.2.324
  11. X. Yang: The Fredholm alternative for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 299 (2004), 494-507. https://doi.org/10.1016/j.jmaa.2004.03.077