DOI QR코드

DOI QR Code

Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice

  • Yang, Hyun-Jung (Department of Food and Nutrition, Kookmin University College of Natural Sciences) ;
  • Joo, Yu-Young (Department of Pharmacology, Seoul National University College of Medicine) ;
  • Hong, Bo-Hyun (Department of Pharmacology, Seoul National University College of Medicine) ;
  • Ha, Sung-Ji (Department of Pharmacology, Seoul National University College of Medicine) ;
  • Woo, Ran-Sook (Department of Anatomy and Neuroscience, College of Medicine, Eulji University) ;
  • Lee, Sang-Hyung (Department of Neurosurgery, Seoul National University College of Medicine) ;
  • Suh, Yoo-Hun (Department of Pharmacology, Seoul National University College of Medicine) ;
  • Kim, Hye-Sun (Department of Pharmacology, Seoul National University College of Medicine)
  • Received : 2010.07.17
  • Accepted : 2010.08.05
  • Published : 2010.08.30

Abstract

Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.

Keywords

References

  1. Chen Y, Liu W, McPhie DL, Hassinger L, Neve RL. APP-BP1 mediates APP-induced apoptosis and DNA synthesis and is increased in Alzheimer's disease brain. J Cell Biol. 2003;163:27-33. https://doi.org/10.1083/jcb.200304003
  2. Chow N, Korenberg JR, Chen XN, Neve RL. APP-BP1, a novel protein that binds to the carboxyl-terminal region of the amyloid precursor protein. J Biol Chem. 1996;271:11339-11346. https://doi.org/10.1074/jbc.271.19.11339
  3. Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008;192: 106-113. https://doi.org/10.1016/j.bbr.2008.02.016
  4. Bruni P, Minopoli G, Brancaccio T, Napolitano M, Faraonio R, Zambrano N, Hansen U, Russo T. Fe65, a ligand of the Alzheimer's beta-amyloid precursor protein, blocks cell cycle progression by down-regulating thymidylate synthase expression. J Biol Chem. 2002;277:35481-35488 https://doi.org/10.1074/jbc.M205227200
  5. Tang BL, Liou YC. Novel modulators of $amyloid-\beta$ precursor protein processing. J Neurochem. 2007;100:314-323. https://doi.org/10.1111/j.1471-4159.2006.04215.x
  6. Sakuma M, Tanaka E, Taru H, Tomita S, Gandy S, Nairn AC, Nakaya T, Yamamoto T, Suzuki T. Phosphorylation of the amino-terminal region of X11L regulates its interaction with APP. J Neurochem. 2009;109:465-475. https://doi.org/10.1111/j.1471-4159.2009.05988.x
  7. Gong L, Yeh ET. Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem. 1999;274,12036. https://doi.org/10.1074/jbc.274.17.12036
  8. Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene. 1999;18:6829-6834. https://doi.org/10.1038/sj.onc.1203093
  9. Osaka F, Kawasaki H, Aida N, Saeki M, Chiba T, Kawashima S, Tanaka K, Kato S. A new NEDD8-ligating system for cullin- 4A. Genes Dev. 1998;12:2263-2268. https://doi.org/10.1101/gad.12.15.2263
  10. Haas AL, Siepmann TJ. Pathways of ubiquitin conjugation. FASEB J. 1997;11:1257-1268. https://doi.org/10.1096/fasebj.11.14.9409544
  11. Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 2009;458:422-429. https://doi.org/10.1038/nature07958
  12. Kamitani TK, Kito HP, Nguyen, Yeh ET. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem. 1997;272:28557-28562. https://doi.org/10.1074/jbc.272.45.28557
  13. Tateishi K, Omata M, Tanaka K, Chiba T. The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J Cell Biol. 2001;155:571-579. https://doi.org/10.1083/jcb.200104035
  14. Kitahara R, Yamaguchi Y, Sakata E, Kasuya T, Tanaka K, Kato K, Yokoyama S, Akasaka K. Evolutionally conserved intermediates between ubiquitin and NEDD8. J Mol Biol. 2006;363:395. https://doi.org/10.1016/j.jmb.2006.07.074
  15. Merlet J, Burger J, Gomes JE, Pintard L. Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci. 2009;66:1924-1938. https://doi.org/10.1007/s00018-009-8712-7
  16. Ohki Y, Funatsu N, Konishi N, Chiba T. The mechanism of poly-NEDD8 chain formation in vitro. Biochem Biophys Res Commun. 2009;381:443-447. https://doi.org/10.1016/j.bbrc.2009.02.090
  17. Kipreos ET, Lander LE, Wing JP, He WW, Hedgecock EM. Cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell. 1996;85:829-839. https://doi.org/10.1016/S0092-8674(00)81267-2
  18. Marin I. Diversification of the cullin family. BMC Evol Biol. 2009;9:267. https://doi.org/10.1186/1471-2148-9-267
  19. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, Hershko A. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol. 2001;3:321-324. https://doi.org/10.1038/35060126
  20. Bassermann F, Pagano M. Dissecting the role of ubiquitylation in the DNA damage response checkpoint in G2. Cell Death Differ. 2010;17:78-85. https://doi.org/10.1038/cdd.2009.104
  21. Cardozo T, Pagano M. Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC Biochem. 2007;8 Suppl 1:S9 https://doi.org/10.1186/1471-2091-8-S1-S9
  22. Chen Y, McPhie DL, Hirschberg J, Neve RL. The Amyloid Precursor Protein-binding Protein APP-BP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons. J Biol Chem. 2000;275:8929-8935 https://doi.org/10.1074/jbc.275.12.8929
  23. Chen Y, Liu W, Naumovski L, Neve RL. ASPP2 inhibits APPBP1- mediated NEDD8 conjugation to cullin-1 and decreases APP-BP1-induced cell proliferation and neuronal apoptosis. J Neurochem. 2003;85:801-809. https://doi.org/10.1046/j.1471-4159.2003.01727.x
  24. Laifenfeld D, Patzek LJ, McPhie DL, Chen Y, Levites Y, Cataldo AM, Neve RL. Rab5 Mediates an Amyloid Precursor Protein Signaling Pathway That Leads to Apoptosis. J Neurosci. 2007;27:7141-7153. https://doi.org/10.1523/JNEUROSCI.4599-06.2007
  25. Polo S, Pece S, Di Fore P. Endocytosis and cancer. Curr Opin Cell Bio. 2004;16:156-161. https://doi.org/10.1016/j.ceb.2004.02.003
  26. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 1996; 10:3129-3140. https://doi.org/10.1101/gad.10.24.3129
  27. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGFresponsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992;12:4565-4574.
  28. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, $A\beta$ elevation, and amyloid plaques in transgenic mice. Science. 1996;274:99-102. https://doi.org/10.1126/science.274.5284.99
  29. Laemili UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227: 680-685. https://doi.org/10.1038/227680a0
  30. Zekanowski C, Wojda U. Aneuploidy, chromosomal missegragation, and cell cycle reentry in Alzheimeri C and Wojda U. Aneuploidy, chromosomal missegregation, and cell cycle reentry in Alzheimer's disease. Acta Neurobiol Exp (Wars). 2009;69: 232-253.
  31. Bonda DJ, Lee HP, Kudo W, Zhu X, Smith MA, Lee HG. Pathological implications of cell cycle re-entry in Alzheimer's disease. Expert Rev Mol Med. 2010;12:e19. https://doi.org/10.1017/S146239941000150X
  32. Rothman SM, Mattson MP. Adverse stress, hippocampal networks, and Alzheimer's disease. Neuromolecular Med. 2010; 12:56-70. https://doi.org/10.1007/s12017-009-8107-9
  33. Park Y, Yoon SK, Yoon JB. TRIP12 functions as an E3 ubiquitin ligase of APP-BP1. Biochem Biophys Res Commun. 2008;374: 294-298. https://doi.org/10.1016/j.bbrc.2008.07.019
  34. Walden H, Podgorski, Schulman BA. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature. 2003;422:330-334. https://doi.org/10.1038/nature01456
  35. Gustaw-Rothenberg K, Lerner A, Bonda DJ, Lee HG, Zhu X, Perry G, Smith MA. Biomarkers in Alzheimer's disease: past, present and future. Biomark Med. 2010;4:15-26. https://doi.org/10.2217/bmm.09.86
  36. Yang Y, Herrup K. Cell division in the CNS: Protective response or lethal event in post-mitotic neurons? Biochim Biophy Acta. 2007;1772:457-466.
  37. Mcshera A, Wahl AF, Smith MA. RE-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer's disease. Medical Hypotheses. 1999;52:525-527. https://doi.org/10.1054/mehy.1997.0680
  38. Nagy Z, Esiri MM, Cato AM, Smith AD. Cell cycle markers in the hippocampus in Alzheimer's disease. Acta Neuropathol. 1997;94:6-15. https://doi.org/10.1007/s004010050665
  39. Neve RL, McPhie DL. Dysfunction of amyloid precursor protein signaling in neurons leads to DNA synthesis and apoptosis. Biochim Biophys Acta. 2007;1772:430-437. https://doi.org/10.1016/j.bbadis.2006.10.008
  40. Bowser R, Smith MA. Cell cycle proteins in Alzheimer's disease: plenty of wheels but no cycle. J Alzheimers Dis. 2002;4:249-254. https://doi.org/10.3233/JAD-2002-4316
  41. Herrup R, Neve SL, Ackerman A, Copani A. Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci. 2004:24:9232-9239. https://doi.org/10.1523/JNEUROSCI.3347-04.2004
  42. Zhu X, McShea A, Harris PLR, Raina AK, Castellani RJ, Funk JO, Shah S, Atwood C, Bowen R, Bowser R, Morelli L, Perry G, Smith MA. Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer's disease. J Neurosci Res. 2004;75:698-703. https://doi.org/10.1002/jnr.20028

Cited by

  1. Neural stem cells isolated from amyloid precursor protein-mutated mice for drug discovery vol.5, pp.4, 2013, https://doi.org/10.4252/wjsc.v5.i4.229
  2. Neddylation activity modulates the neurodegeneration associated with fragile X associated tremor/ataxia syndrome (FXTAS) through regulating Sima vol.143, pp.None, 2010, https://doi.org/10.1016/j.nbd.2020.105013