Thermo-reversible Crosslinking Elastomer through Supramolecular Networks

초분자 네트워크를 이용한 열가역성 가교 탄성체

  • Bae, Jong-Woo (Korea Institute of Footwear and Leathers Technology) ;
  • Oh, Sang-Taek (Korea Institute of Footwear and Leathers Technology) ;
  • Kim, Gu-Ni (Korea Institute of Footwear and Leathers Technology) ;
  • Baik, Hyen-Jong (Department of Chemical Engineering, Pusan National University) ;
  • Kim, Won-Ho (Department of Chemical Engineering, Pusan National University) ;
  • Choi, Sung-Seen (Department of Chemistry, Sejong University)
  • Received : 2010.07.12
  • Accepted : 2010.07.26
  • Published : 2010.09.30

Abstract

Recently supramolecular network thermo-reversible crosslinking elastomer having flexibility, various functionality, and advantages of thermoplastic elastomer (TPE) such as recycle and easy processbility is introduced. Although thermo-reversible bonds such as hydrogen bond and ionic cluster is recognized as a common technology since 1990, control technology of bonding and dissociation of crosslink in supramolecular network is a recent technology. In this review, characteristics of thermo-reversible crosslinking elastomer having rheological properties of TPE and reinforcing behaviors of thermoset elastomer are summarized.

최근에 기존 고무의 장점인 유연성과 충전제에 의한 다양한 기능성과 열가소성 고무의 장점인 리싸이틀 및 성형의 용이성을 동시에 갖춘 초분자 네트워크형 열가역성 가교 탄성체가 소개되고 있다. 수소 결합과 이온 클러스터간의 결합력과 같은 열가역성 결합은 1990년부터 소개되었지만, 초분자 네트워크에서 가교 구조의 결합과 절단을 조절할 수 있는 기술이 시도된 것은 최근의 기술적 성과이다. 본 보문에서는 열가소성 탄성체의 용융 특성과 가교 탄성체의 보강 거동을 가지는 열가역성 가교 탄성체의 특징들을 정리하였다.

Keywords

References

  1. R. Gheneim, C. Perez-Berumen, and A. Gandini, "Diels−Alder Reactions with Novel Polymeric Dienes and Dienophiles: Synthesis of Reversibly Cross-Linked Elastomers", Macromolecules, 35, 7246 (2002). https://doi.org/10.1021/ma020343c
  2. E. Goiti, M. B. Huglin, and J. M. Rego, "Thermal Breakdown by the Retro Diels–Alder Reaction of Crosslinking in Poly[styrene- co-(furfuryl methacrylate)]", Macromol. Radik. Commun., 24, 692 (2003). https://doi.org/10.1002/marc.200350013
  3. D. Joel and A. Hauser, "Thermal Dissociation of Urethanes Studied by FTIR Spectroscopy", Angew. Makromol. Chem., 217, 191 (1994). https://doi.org/10.1002/apmc.1994.052170116
  4. T. Hentschel and H. Munstedt, "Kinetics of the molar mass decrease in a Polyurethane melt: a Rheological study", Polymer, 42, 3195 (2001). https://doi.org/10.1016/S0032-3861(00)00489-4
  5. J. F. Pazos, U.S. patent 3872057 (1975).
  6. K. B. Wagener and L. P. Engle, "Thermally Reversible Polymer Linkages. 3. Covalently Cross-linked Poly(azlactone)", Macromolecules, 24, 6809 (1991). https://doi.org/10.1021/ma00026a001
  7. D. Augustin, C. Leriche, and P. Poisson, U.S. patent 4617354 (1986).
  8. M. Bruch, D. Mäder, F. Bauers, T. Loontjens, and R. Mülhaupt, "Melt Modification of Poly(styrene-co-maleic anhydride) with Alcohols in the Presence of 1,3-oxazolines", J. Polym. Sci. Part A Polym. Chem., 38, 1222 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000415)38:8<1222::AID-POLA5>3.0.CO;2-Z
  9. G. H. Hu and J. T. Lindt, "Monoesterification of Styrene-maleic anhydride Copolymers with Alcohols in Ethyl benzene", J. Polym. Sci. Part A Polym. Chem., 31, 691 (1993).
  10. G. Schmidt-Naake, H. G. Becker, and M. Klak, "Modification of Polymers in the Melt", Macromol. Symp., 163, 213 (2001). https://doi.org/10.1002/1521-3900(200101)163:1<213::AID-MASY213>3.0.CO;2-J
  11. K. Chino, M. Ikawa, and J. Nator, U.S. patent 6746562 (2004).
  12. K. Chino, "Development of Thermoreversible Crosslinking rubber using Supramolecular Hydrogen bonding Networks", Japan rubber society, 78, 106 (2005). https://doi.org/10.2324/gomu.78.106
  13. M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, "Thermoreversible Crosslinking of Maleated Ethylene/Propylene Rubber Using Ionic Interactions, Hydrogen Bonding and a Combination Thereof", Rubber Chemistry and Technology, 81, 96 (2008). https://doi.org/10.5254/1.3548200
  14. M. A. J. van der Mee, J. G. P. Goossens, and M. van Duin, "Thermoreversible Cross-linking of Maleated ethylene/propylene Copolymers with Diamines and Amino-alcohols", Polymer, 49, 1239 (2008). https://doi.org/10.1016/j.polymer.2008.01.031
  15. K. Chino, M. Ikawa, and M. Ashiura, U.S. patent 6512051 (2003).
  16. H. Bai and B. Cheng, "Preparation of Thermoreversible Crosslinking Butyl rubber by Reaction of Brominated butyl rubber with 4-amino-uracil", China Synthetic Rubber Industry, 31, 195 (2008).