2차원적인 단층 및 복층 그래핀 결정에 대한 원자분해 투과전자현미경 영상 시뮬레이션 연구

A Simulation Study of Atomic Resolution TEM images for Two Dimensional Single Layer and Bilayer Graphene Crystal

  • 김황수 (경성대학교 이과대학 물리학과)
  • 투고 : 2010.02.16
  • 심사 : 2010.03.23
  • 발행 : 2010.03.31

초록

단층 및 복층의 그래핀에 대한 원자분해 투과전자현미경 영상 시뮬레이션 연구에서, 통상의 Boch-wave 방법에 의한 영상이론식들이 고 준위 Laue 영역의 역 격자 회절을 적절히 포함 했을 때 시뮬레이션에 잘 적용될 수 있음을 보여 주었다. 적절한 조건에서 복층 그래핀의 시뮬레이션 영상들은 육방정계의 대칭성 보다는 삼방정계의 대칭성을 보여 주었다. 이 결과는 복층 그래핀이 3차원 공간에서 [0001] 축 방향 회전에 대해 갖는 삼방정계의 격자 대칭성이 영상에 구현되는 것으로 이해될 수 있다. 단층 그래핀에 대해서는, 관측 위상영상이 삼방정계의 대칭성을 보여주는 현상들이 특히 주목되었다. 이 현상은 그래핀 표면에 전자 밀도의 재 배치에 의한 것으로 설명되었다. 그리고 그래핀의 전자 재 배치를 반영하는, 다만 2번째 Laue 준위 영역의 회절 빔까지만 포함하면 관측 영상과 일치하는 시뮬레이션 위상 영상이 얻어졌다.

In a simulation study of atomic resolution transmission electron microscope images of single layer and bilayer graphene, it is demonstrated that the conventional Bloch wave formulations can be used when high-order Laue zone reflections are properly taken into account in the theory. The simulated images for bilayer graphene show 3-fold rotational lattice symmetry rather than the 6-fold one under certain conditions. This result can be understood as revealed the 3-fold rotational lattice symmetry of bilayer graphene in three dimensions along [0001]. For single layer graphene the observed phase images showing 3-fold rotational lattice symmetry were particularly noted. This phenomenon has been explained by an assumption of the re-configuration of electron density on the surface of graphene. And the matching images have been obtained as simulated with up to the second order Laue zone reflections only, reflecting the re-configuration of electrons on the surface.

키워드

참고문헌

  1. Allen LJ, McBride W, O'Leary NL, Oxley MP: Exit wave reconstruction at atomic resolution. Ultramicroscopy 100 : 91-104, 2004. https://doi.org/10.1016/j.ultramic.2004.01.012
  2. Allen LJ, Oxley MP and Ishizuka K: Electron microscope Cs correction using iterative wave-function reconstruction. Asia/Pacific Microscopy and Analysis 52 : 5-7, 2006.
  3. Dato A, Lee ZH, Jeon KJ, Erni R, Radmilovic V, Richardson TJ, Frenklach M. Clean and highly ordered graphene synthesized in the gas phase. Chem Commun 40 : 6095-6097, 2009.
  4. Geim AK: Graphene: status and prospects. Science 324(5934) : 1530-1534, 2009. https://doi.org/10.1126/science.1158877
  5. Girit C, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A: Graphene at the edge: stability and dynamics. Science 323 : 1705-1708, 2009. https://doi.org/10.1126/science.1166999
  6. Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ: Electron Microscopy of Thin Crystals. Krieger Publ., Huntington (N.Y.) 1977.
  7. Jinschek J, Yucelen E, Kisielowski C: Cover image for single layer and bilayer graphene. Microscopy and Analysis (suppl.) Nov/Dec 2009 Asia/Pacific.
  8. Kim HS, Sheinin SS: Effects of higher-order Laue zone reflections on structure images. Proc. 51st Annual Meeting of MSA at San Francisco, pp. 450-451, 1993.
  9. Kim HS: Effects of higher-order Laue zone reflections on HRTEM images for illumination along an off-zone axis of a crystal. Korean J. Electron Microscopy 37(4) : 259-269, 2007. (Korean)
  10. Lee CG, Wei X, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 : 385-388, 2008. https://doi.org/10.1126/science.1157996
  11. Lee ZH, Dato A, Jeon KJ, Erni R, Richardson TJ, Frenklach M, Radmilovic V: Atomic resolution imaging and spectroscopy of graphene using the TEAM 0.5. Microsc. Microanal. 15(Suppl.2) : 124-125, 2009. https://doi.org/10.1017/S1431927609098985
  12. Meyer JC, Chuvilin A, Kaiser U: Electron microscopic studies with graphene. Microsc. Microanal. 15(Suppl.2) : 126-127, 2009. https://doi.org/10.1017/S1431927609096056
  13. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S: The structure of suspended of graphene sheets. Nature 446(7131) : 60-63, 2007. https://doi.org/10.1038/nature05545
  14. Rutter GM, Crain JN, Guisinger NP, First PN, Stroscio JA: Structure and electronic properties of bilayer epitaxial graphene. J Vac Sci Technol A 26(4) : 938-943, 2008. https://doi.org/10.1116/1.2944257
  15. Trucano P, Chen R: Structure of graphite by neutron diffraction. Nature 258(5531) : 136-137, 1975. https://doi.org/10.1038/258136a0
  16. Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459 : 820-823, 2009. https://doi.org/10.1038/nature08105