References
- Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T., Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9, 1, 3–15. 2003.
- Amenta, N and Bern, M, Surface reconstruction by voronoi filtering, Discrete and Comput. Geometry, vol. 22, pp. 481-504, 1999. https://doi.org/10.1007/PL00009475
- Amenta, N., Bern, M., and Eppstein, D., The crust and the -skeleton: Combinational curve reconstruction, 14th ACM Symposium on Computational Geometry, 1998.
- Amenta, N., Bern, M., and Kamvysselis, M., A new voronoi-based surface reconstruction algorithm, in SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, (New York, NY, USA), pp. 415-421, ACM Press, 1998.
- Amenta, N., Kil, Y. J., Defining point-set surfaces. ACM Trans. Graph. 23(3): 264-270 (2004) https://doi.org/10.1145/1015706.1015713
- Bajaj, C. L., Bernardini, F., and Xu, G., Automatic reconstruction of surfaces and scalar fields from 3d scans, in SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, (New York, NY, USA), pp. 109-118, ACM Press, 1995.
- Boissonnat, J. D., Geometric structures for three dimensional shape reconstruction, ACM Trans. Graphics 3, pp. 266-286, 1984. https://doi.org/10.1145/357346.357349
- Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B. C., and Evans, T. R., Reconstruction and representation of 3d objects with radial basis functions, in SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, (New York, NY, USA), pp. 67-76, ACM Press, 2001.
- Curless, B., and Levoy, M., A volumetric method for building complex models from range images, in SIGGRAPH '96: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, (New York, NY, USA), pp. 303-312, ACM Press, 1996.
- Duda, R. O., Hart, P. E., Stork, D. G., Pattern Classification, October 2000, Wiley-Interscience; 2 edition.
- Edelsbrunner, H., Shape reconstruction with delaunay complex, in LATIN '98: Proceedings of the Third Latin American Symposium on Theoretical Informatics, (London, UK), pp. 119-132, Springer-Verlag, 1998.
- Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W., Surface reconstruction from unorganized points, in SIGGRAPH '92: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, (New York, NY, USA), pp. 71-78, ACM Press, 1992.
- Hilton, A., Stoddart, A. J., Illingworth, J., and Windeatt, T., Implicit surface-based geometric fusion, Comput. Vis. Image Underst., vol. 69, no. 3, pp. 273-291, 1998. https://doi.org/10.1006/cviu.1998.0664
- Levin, D., Mesh-independent surface interpolation. In Geometric Modeling for Scientific Visualization, G. Brunnett, B. Hamann, K. Mueller, and L. Linsen, Eds. Springer- Verlag, 2003.
- Medioni, G., Lee, M.-S., and Tang, C.-K., A computational framework for segmentation and grouping. Elsevier, 2000.
- Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H., Multi-level partition of unity implicits, ACM Trans.Graph, 2003, Pages: 463-470. https://doi.org/10.1145/882262.882293
- Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R., A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, CVPR 2006, vol. 1, pages 519-526.
- Whitaker, R., A level set approach to 3D reconstruction from range data, International journal of Computer Vision, 1997.
- Xie, H., Wang, J., Hua, J., Qin, H., Kaufman, A., Piecewise c1 continuous surface reconstruction of noisy point clouds via local implicit quadric regression. IEEE Visualization 2003, 91–98.
- Zhao, H., Osher, S., Merriman, B., and Kang, M., Implicit and non-parametric shape reconstruction from unorganized data using a variational level set method, Computer Vision and Image Understanding, vol. 80, pp. 295-319, 2000. https://doi.org/10.1006/cviu.2000.0875
- Zhao, H., Osher, S., and Fedkiw, R., Fast surface reconstruction using the level set method, in VLSM '01: Proceedings of the IEEE Workshop on Variational and Level Set Methods (VLSM'01), (Washington, DC, USA), p. 194, IEEE Computer Society, 2001.