DOI QR코드

DOI QR Code

저탄소강 용접열영향부의 NaCl, H2S 수용액에서 생성되는 부식스케일 분석

Analysis on the Scales formed on the Heat Affected Zone of Low Carbon Steel Weld in NaCl and H2S Water Solutions

  • 김민정 (성균관대학교 신소재공학과) ;
  • 배동호 (성균관대학교 기계공학과) ;
  • 이동복 (성균관대학교 신소재공학과)
  • Kim, Min-Jung (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Bae, Dong-Ho (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Dong-Bok (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 투고 : 2010.06.28
  • 심사 : 2010.08.30
  • 발행 : 2010.08.31

초록

The A106 Gr B low carbon steel, which was used in the electric power plants and heavy chemical plants, was welded by multi-pass arc welding. The heat affected zone (HAZ) formed by welding was corroded in acid chloride solution, or in saturated $H_2S$ containing acid chloride solution, or in saturated $H_2S$ containing acid chloride solution under applied current. In this order of corrosion solution, the rate of corrosion increased, because $H_2S$ accelerated the iron dissolution, hydrogen evolution, and the formation of nonprotective FeS, whereas the applied current accelerated the electrochemical reaction. The scales formed in acid chloride solution consisted primarily of $Fe_3O_4$, while those formed in $H_2S$ containing acid chloride solution consisted primarily of $Fe_3O_4$ and FeS.

키워드

참고문헌

  1. L. Raymond, ASM Handbook, Vol. 13, ASM International (1987) 283.
  2. F. M. F. Guedes, G. Razzini, Corros. Sci. 45 (2003) 2129. https://doi.org/10.1016/S0010-938X(03)00033-7
  3. H. G. Jung, S. H. Kim, B. Y. Yang, K. B. Kang, Corros. Sci. Technol. 7 (2008) 288.
  4. S. Y. Shin, K. S. Oh, S. H. Lee, J. of the Kor. Inst. of Met. & Mater. 47 (2009) 59.
  5. W. K. Kim, S. U. Koh, B. Y. Yang, K. Y. Kim, Corros. Sci. Technol. 6 (2007) 96.
  6. A. Hernandez-Espejel, M. A. Dominguez-Crespo, R. Cabrera-Sierra, C. Rodriguez-Meneses, E. M. Arce-Estrada, Corros. Sci. 52 (2010) 2258. https://doi.org/10.1016/j.corsci.2010.04.003
  7. M. A. Veloz, I. Gonzalez, Electrochim. Acta, 48 (2002) 135. https://doi.org/10.1016/S0013-4686(02)00549-2
  8. H. H. Huang, W. T. Tsai, J. T. Lee, Electrochim. Acta, 41 (1996) 1191. https://doi.org/10.1016/0013-4686(95)00470-X
  9. H. Espejel, M. A. D. Crespo, R. C. Sierra, C, R. Meneses, E. M. A. Estrada, Corros. Sci. in press, (2010).
  10. H. H. Huang, J. T. Lee, W. T. Tsai, Mater. Chem. Phys. 58 (1999) 177. https://doi.org/10.1016/S0254-0584(98)00277-6
  11. J. Tang, Y. Shao, J. Guo, T. Zhang, G. Meng, F. Wang, Corros. Sci. 52 (2010) 2050. https://doi.org/10.1016/j.corsci.2010.02.004
  12. S. H. Jeon, K. G. Chin, K. S. Shin, H. S. Sohn, D. R. Kim, J. of the Kor. Inst. of Met. & Mater. 46 (2008) 289.