DOI QR코드

DOI QR Code

Properties of Indium Doped Zinc Oxide Thin Films Deposited by RF Magnetron Sputtering

  • Bang, Joon-Ho (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Se-Hun (Department of Materials Science and Engineering, Pusan National University) ;
  • Cho, Sang-Hyun (Nano Convergence Practical Application Center, Daegu Technopark) ;
  • Song, Pung-Keun (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2010.08.29
  • Accepted : 2010.08.30
  • Published : 2010.08.31

Abstract

Indium doped zinc oxide films (ZIO) were deposited on non-alkali glass substrates by radio frequency (RF) magnetron sputtering at room temperature. The structural, electrical and optical properties of the ZIO films were investigated as a function of their $In_2O_3$ content (3.33-15.22 wt%). The ZIO films deposited with an $In_2O_3$ content of 9.54 wt% showed a relatively low resistivity of $9.13{\times}10^{-4}{\Omega}cm$ and a highly c-axis preferred orientation. The grain size and FWHM were mainly affected by the $In_2O_3$ content. The crystallinity and resistivity were enhanced with increasing grain size. The average transmittance of the ZIO films was over 85% in the visible region and their band gap varied from 3.22 to 3.66 eV depending on their doping ratio.

Keywords

References

  1. P. Prathp, G. Gowri Devi, Y. P. V. Subbaiah, K. T. Ramakrishna Reddy, V. Ganesan, C. Appl. Phys., (2008) 8.
  2. S. S. Lin, J. L. Huang, D. F. Lii, Mater. Chem. Phys., 90 (2005) 22. https://doi.org/10.1016/j.matchemphys.2004.08.040
  3. S. H. Jeong, S. B. Lee, J. H. Boo, C. Appl. Phys., 4 (2004) 655. https://doi.org/10.1016/j.cap.2003.11.065
  4. S. H. Mohamed, A. M. Abd El-Rahman, A. M. Salem, L. Pichon, F. M. El-Hossary, J. Phys. Chem. Solids., 67 (2006) 2351. https://doi.org/10.1016/j.jpcs.2006.05.048
  5. M. Kon, P. K. Song, A. Mitsui, Y. Shigesato, Jpn. J. Appl. Phys., 41 (2002) 6174. https://doi.org/10.1143/JJAP.41.6174
  6. H. Kim, J. S. Horwitz, S. B. Qadri, D. B. Chrisey, Thin Solid Films., 420 (2002) 107. https://doi.org/10.1016/S0040-6090(02)00658-2
  7. G. K. Paul, S. Bandyopadhyay, S. K. Sen, S. Sen, Mater. Chem. Phys., 79 (2003) 71. https://doi.org/10.1016/S0254-0584(02)00454-6
  8. T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys., 24 (1985) 781. https://doi.org/10.1143/JJAP.24.781
  9. Z. Q. Xu, H. Dong, J. Xie, Y. Li, X. T. Zu, Appl. Surf. Sci., 253 (2006) 476. https://doi.org/10.1016/j.apsusc.2005.12.113
  10. J. F. Chang, H. L. Wang, M. H. Hon, J. Cryst. Growth., 211 (2000) 93. https://doi.org/10.1016/S0022-0248(99)00779-4
  11. S. S. Lin, J. L. Huang, D. F. Lii, Surf. Coat. Technol., 176 (2004) 173. https://doi.org/10.1016/S0257-8972(03)00665-0
  12. M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, Thin Solid Films., 516 (2008) 2017. https://doi.org/10.1016/j.tsf.2007.06.173
  13. A. E. Manouni, F. J. Manjon, M. Mollar, B. Mari, R. Gomez, M. C. Lopez, J. R. Ramos-Barrado, Superlattices and Microstructures, 39 (2006) 185. https://doi.org/10.1016/j.spmi.2005.08.041
  14. A. M. K. Dagamseh, B. Vet, F. D. Tichelaar, P. Sutta, M. Zeman, Thin Solid Films, 516 (2008) 7844. https://doi.org/10.1016/j.tsf.2008.05.009
  15. G. Goncalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, E. Fortunato, Thin Solid Films, 515 (2007) 8562. https://doi.org/10.1016/j.tsf.2007.03.126