DOI QR코드

DOI QR Code

GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns

As과 Ga 빔 조사에 의해 세척된 Si(100) 기판 위에 GaAs 에피층 성장과 RHEED 패턴

  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Inje University) ;
  • Kim, Min-Su (Department of Nano Systems Engineering, Inje University) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Inje University)
  • 임광국 (인제대학교 나노시스템공학과) ;
  • 김민수 (인제대학교 나노시스템공학과) ;
  • 임재영 (인제대학교 나노시스템공학과)
  • Received : 2010.07.20
  • Accepted : 2010.08.30
  • Published : 2010.08.31

Abstract

The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy(MBE) using the two-step method. The Si(100) substrates were cleaned with different surface cleaning method of vacuum heating, As-beam, and Ga-beam at the substrate temperature of $800^{\circ}C$. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and 1 ${\mu}m$, respectively. The surface structure and epitaxial growth were observed by reflection high-energy electron diffraction(RHEED) and scanning electron microscope(SEM). Just surface structure of the Si(100) substrate cleaned by Ga-beam at $800^{\circ}C$ shows double domain ($2{\times}1$). RHEED patterns of the GaAs epitaxial layers grown on Si(100) substrates with cleaning method of vacuum heating, As-beam, and Ga-beam show spot-like, ($2{\times}4$) with spot, and clear ($2{\times}4$). From SEM, it is found that the GaAs epitaxial layers grown on Si(100) substrates with Ga-beam cleaning has a high quality.

Keywords

References

  1. T. W. Kang, J. Y. Leem, T. W. Kim, Microelectronics J., 27 (1996) 423. https://doi.org/10.1016/0026-2692(95)00066-6
  2. J. Y. Leem, D. Y. Kim, T. W. Kang, J. J. Lee, J. Y. Oh, Appl. Phys. Lett., 57 (1990) 2228. https://doi.org/10.1063/1.103899
  3. H. Usui, S. Mukai, H. Yasuda, H. Mori, J. Cryst. Growth, 311 (2009) 2269. https://doi.org/10.1016/j.jcrysgro.2009.01.081
  4. H. Huang, X. Ren, J. Lv, Q. Wang, H. Song, S. Cai, Y. Huang, B. Qu, J. Appl. Phys., 104 (2008) 113114-1. https://doi.org/10.1063/1.3035843
  5. T. Soga, T. Jimbo, G. Wang, K. Ohtsuka, M. Umeno, J. Appl. Phys., 87 (2000) 2285. https://doi.org/10.1063/1.372174
  6. D. Colombo, E. Grilli, M. Guzzi, S. Sanguinetti, A. Fedorov, H. von Kanel, G. Isella, J. Luminescence, 121 (2006) 375. https://doi.org/10.1016/j.jlumin.2006.08.027
  7. G. E. Becker, J. C. Bean, J. Appl. Phys., 48 (1997) 3395.
  8. Y. Ota, J. Electrochem. Soc., 126 (1979) 1761. https://doi.org/10.1149/1.2128792
  9. J. C. Bean, G. E. Becker, P. M. Petroff, T. E. Seidel, J. Appl. Phys., 48 (1977) 907. https://doi.org/10.1063/1.323706
  10. J. C. Bean, G. A. Rozgonyi, Appl. Phys. Lett., 41 (1982) 752. https://doi.org/10.1063/1.93666
  11. D. M. Zehner, C. W. White, G. W. Ownby, Appl. Phys. Lett., 36 (1980) 56. https://doi.org/10.1063/1.91315
  12. T. de Jong, W. A. S. Dowma, L. Smit, V. V. Korablev, F. W. Saris, J. Vac. Sci. Technol. B, 1 (1983) 888. https://doi.org/10.1116/1.582709
  13. A. Ishizaka, Y. Shiraki, J. Electrochem. Soc., 133 (1986) 666. https://doi.org/10.1149/1.2108651
  14. T. W. Kang, Y. T. Oh, J. Y. Leem, T. W. Kim, J. Material Sci. Lett., 11 (1992) 392. https://doi.org/10.1007/BF00728719
  15. C. Cochran, L. Foster, J. Electrochem. Soc., 109 (1962) 144. https://doi.org/10.1149/1.2425347