308

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 12, NO. 4, AUGUST 2010

A Novel Multiple Access Scheme via Compressed Sensing
with Random Data Traffic

Rukun Mao and Husheng Li

Abstract: The problem of compressed sensing (CS) based multi-
ple access is studied under the assumption of random data traf-
fic. In many multiple access systems, i.e., wireless sensor networks
(WSNSs), data arrival is random due to the bursty data traffic for
every transmitter. Following the recently developed CS methodol-
ogy, the technique of compressing the transmitter identities into
data transmissions is proposed, such that it is unnecessary for a
transmitter to inform the base station its identity and its request to
transmit. The proposed compressed multiple access scheme identi-
fies transmitters and recovers data symbols jointly. Numerical sim-
ulations demonstrate that, compared with traditional multiple ac-
cess approaches like carrier sense multiple access (CSMA), the pro-
posed CS based scheme achieves better expectation and variance of
packet delays when the traffic load is not too small.

Index Terms: Bursty traffic, compressed sensing (CS), multiple ac-
cess.

I. INTRODUCTION

In many wireless communication systems, e.g., wireless sen-
sor networks or cellular networks, multiple transmitters need
to transmit their data to a base station, thus requiring the tech-
nique of multiple access, such as time division multiple access
(TDMA), code division multiple access (CDMA), or orthogonal
frequency division multiple access (OFDMA). We suppose that
the channels are vectorized, either in frequency or in time, and
assume that the dimension of the vector channel is smaller than
the number of transmitters. Quite often, the data traffic at a trans-
mitter is bursty, i.e., in one time slot, only a portion of the trans-
mitters have data to transmit. For example, in a sensor network,
there could be hundreds of sensors associated with one base sta-
tion; however, in many applications, there are only several sen-
sors reporting to the base station simultaneously. Therefore, the
base station needs to know the identities of the active transmit-
ters. Moreover, the data packet could be very small, e.g., just a
record of local temperature. Thus the identity information may
cause significant overhead. The identification problem could be
solved using the following three different ways:

1. Add the identity information into data packets explicitly,
i.e., adding an identity field in the packet header. If the re-
ceiver can decode a data packet, it can determine the owner
of the packet.

2. Set a preamble before each data transmission. In this
preamble, active transmitters send out requests containing
their identity information.
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Table 1. Typical multiple access approaches.

Typical multiple access approaches

Category | Identifying method Cost
1 Decode packet header Identity field
2 Send request Preamble period

in preamble
3 Assign different
signature waveforms

Signature waveforms
and their projection

3. Similar to CDMA systems, assign different signature
waveforms to different transmitters and project the received
signal onto all signature waveforms. Only transmitters with
sufficiently large projections are considered as being active.

However, all three approaches have drawbacks. Approach 1 in-
cludes overhead to the data packet. In approach 2, it may require
a long preamble if the requests of different transmitters are kept
orthogonal, when the number of transmitters is large. If the or-
thogonality constraint in the preamble is removed (e.g., using
contention based multiple access), there could be collisions of
request signals. In approach 3, when the dimension of the vec-
tor channel is smaller than the number of transmitters (like an
overloaded CDMA system), the signature waveforms cannot be
orthogonal; therefore it is difficult to determine a threshold for
the active user selection.

Besides the identification problem, multiple access scheme,
i.e., how to separate the signals from different transmitters, is
also an important problem. In approach 2, the receiver can allo-
cate different time slots to the transmitters in a TDMA fashion.
However, the feedback signaling of time slot allocation induces
overhead to the system. In approach 3, CDMA can be used to
separate the signals from different transmitters; whereas it suf-
fers from multiuser interference when nonorthogonal spreading
codes are used.

In this paper, we tackle the multiple access problem by em-
ploying the compressed sensing [1]-[3], a signal processing
technique developed in recent years. Based on the assumption
that the signal is sparse, i.e., most elements of the signal in a
transformation domain are zero or have small amplitudes, com-
pressed sensing reconstructs original signal from observations.
Efficient algorithms like basis pursuit (BP) [4], [5], orthogonal
matching pursuit (OMP) [6], [7], and stagewise OMP (StOMP)
[8] have been proposed and applied in fields like data compres-
sion [9], sensor networks, and image processing [12].

It is easy to find the analogy between the multiple access and
compressed sensing since the received signal at base station is
also given by ®x, where x is the vector of transmitted signal and
the columns in P are the signature waveforms of different trans-
mitters. Therefore, we can allow the transmitters having data
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to transmit directly without the stage of request in approach 2.
When there is no noise, the equation can be perfectly solved,
thus avoiding the threshold in approach 3. The identities of the
active transmitters are simply a by-product of the solution, i.e.,
the locations of the non-zero elements in x, thus avoiding the
overhead of explicit identity in approach 1. We coin the scheme
proposed in this paper Compressed Multiple Access since the
identity information is “compressed” into the data transmission.
Moreover, the sparsity required by compressed sensing is as-
sured by the assumption that most transmitters do not have data
to transmit. Therefore, the identification and multiple access
problems are solved jointly. Numerical simulation results will
show that, compared with the traditional carrier sense multiple
access (CSMA), the proposed multiple access scheme achieves
better performance for the expectation and variance of packet
delays when the traffic load is not too small.

The remainder of this paper is organized as follows. In Sec-
tion II, we present our system model. The design of the com-
pressed multiple access is presented in Section III, followed by
the simulation based performance evaluation in Section IV. The
conclusions are provided in Section V.

The following mathematical notations are used throughout
the paper.

e o denotes Hadamard product. For two matrices A and B
having the same size, (A o B);; = Ay Byj.

e For matrix A, AT means the transpose of A.

e For an n-vector x, its 1-norm equals "7 _; |zx| and its O-
norm means the number of nonzero elements.

II. SYSTEM MODEL

In a wireless system, suppose that a base station receives sig-
nals from m transmitters (e.g., sensors in wireless sensor net-
works or mobile phones in cellular systems) via vector channels
of dimension n. In general case, the vector channel could be in
either time or frequency. In this paper, we assume that the vector
is in frequency, i.e., each dimension corresponds to a subcarrier
in the frequency domain. For simplicity, we assume that the re-
ceived signal is real. It is straightforward to extend the real signal
to complex signal case.

At time slot ¢, the received signal is given by an n-vector:

m

r(t) = 3 las(t)he o se(t)] + n(t)

k=1

Y]

where hy, is the vector of channel amplitude gains of transmit-
ter k with upper bound hmax and lower bound hyin, x(t) is
the information symbol of transmitter k. sy (¢) is the vector of
signature waveforms of transmitter & at time slot t. n(t) is the
received noise vector at time slot ¢. We also place the following
assumptions on the system model.

1. We assume that a transmitter does not always have data to
transmit. The data burst is random which means that aver-
agely pm(0 < p < 1) transmitters generate a new data to
transmit at a time slot. When transmitter & has no data, it
does not transmit, namely x; = 0. We also assume that
the receiver does not have a priori information about which
transmitters have data.
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2. The channel gain vector hy does not change in time. The
receiver knows the channel gains perfectly by letting the
transmitter send out pilot signals periodically. However, the
transmitters do not know the channel gains perfectly.

3. Equation (1) implicitly assumes that the transmitters are
perfectly synchronized in time. This assumption will be ad-
dressed in details and relaxed later.

4. We assume that s (t), the signature waveform of transmit-
ter k, is a vector randomly chosen on the unit sphere in R™.
The signature waveforms are known at both the transmitters
and receiver.

5. A buffer is used for each transmitter to store untransmitted
data packets.

Applying the assumption on signature waveforms, we can
rewrite (1) as

r(t) = ®()x(t) +n(?) 2)
where
x(t) 2 (21(t), - 2m(t)" 3)
and
®=HoS(t) (4)

where S(t) £ (s1(t), -, 8m(t)) and H £ (hy,---, hy).

When there are multiple time slots, say from time slot 1 to
time slot £, during which the transmitted symbols do not change
(will be called a frame later), we can stack the received signals
together and obtain the following expression

r(1:t) = (1 t)x(1) +n(l : ) ®)
where
r(1:4) = (e, x(®)T)" ©
n(1:¢) = (n(1)7,-n@)7)", ™
and
®(1:t)=(HT,-.. ,HT) 08(1:1) @)

and S(1: ) 2 (S(1)T,---, S(t)T)T.

III. COMPRESSED MULTIPLE ACCESS

In this section, we propose a novel scheme of multiple access
based on compressed sensing. We first explain the procedure of
the multiple access. Then, we provide an illustrative example,
as well as a proposition about the equivalence between 0-norm
and 1-norm optimization conditioned on the signal sparsity.

A. Procedure of Multiple Access
A.1 Frame Structure

In contrast to conventional multiple access approaches (e.g.,
CSMA/CA), the proposed compressed multiple access scheme
encourages transmission collisions. Actually, every single mea-
surement is a mixture of received information symbols modu-
lated by their own channel gains and signature waveforms plus
noise. As illustrated in Fig.1, we define a frame with varying
length (different numbers of time slots). A frame ends only
when sufficiently many measurements have been obtained and
two adjacent reconstructions generate the same results [13].
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Here, we assume that a computationally efficient reconstruc-
tor, which can reconstruct the original signals exactly when
enough samples have been received, is equipped at the base sta-
tion. Therefore, multiple access is now possible using the smail-
est number of time slots, and without any a priori knowledge
about how many transmitters are transmitting data in the current

frame.
e L

Frame -

]‘

Start

End

Fig. 1. Frame with varying length.

A.2 Data Transmission

In each frame, the number of transmitters allowed to trans-
mit data is determined at the beginning of the frame and then
fixed throughout the entire frame. Before starting a new frame,
the base station broadcasts a very short beacon signal, e.g., a
sinusoid, indicating the start of a new frame. Sensors having
data in their buffers are legal for transmitting in the new frame.
In the entire frame, sensors keep transmitting the same data of
their own and only change signature waveforms si(¢) in each
time slot. If a new data is generated in the middle of a frame,
then the transmitter will put the newly generated data into its
buffer, and forms a first-in-first-out queue for the data waiting to
be transmitted. When the base station finds that it has received
sufficiently many observations and is able to distinguish the sig-
nals from different transmitters, it sends out a beacon signal to
indicate the end of the current frame. Thus, the transmitters stop
transmitting the current data. At this time, the received signal at
the base station is given by (5) and the base station uses com-
pressed sensing algorithm, e.g., OMP, to reconstruct the signals
from different transmitters. In the next time slot, a new frame
begins and the procedure is repeated.

Algorithm 1 Procedure at the transmitter side

if start == TRUE then
1+ 0
end if
while stop # TRUE do
Send z, % s5[i)
T4t 1
if New data generated then
n+<n+1
Send Buffer[n]=New data
end if
end while
forj=0ton—1do
Send Buffer[j]}=Send Buffer[j + 1]
end for
nen-—1

The described procedure of the compressed multiple access is
summarized in algorithms 1 and 2 for transmitter and receiver,
respectively. In the pseudo codes, szart and stop are control sig-
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Algorithm 2 Procedure at the receiver side
if Previous frame ends then
Send start = TRUE
end if
repeat
CS reconstruction
until two consequent recoveries are identical
Send stop = TRUE

nals broadcasted by base station in order to inform transmitters
the start and end of one frame.

B. An Illustrative Example

In Fig.2, we provide an example to illustrate the procedure of
compressed sensing based multiple access. For the first frame,
transmitters Tx1 and Tx2 have data x19, z2g to transmit (here
additional subscript n in zy, represents the nth information
symbol sent by transmitter k). During the first frame, z;; and
30 are generated at Tx1 and Tx3 and are saved in their own
buffers, respectively. For the second frame, Tx1 and Tx3 start
transmitting. The detailed procedure is given below.

1. Attime slot 1, a start signal is received by all transmitters in
base station’s coverage; the transmitters initialize signature
waveform index i to 0;

2. within the following several time slots before receiving
Sframe I’s stop signal, transmitters Tx1, Tx2 send x19 X
81 (1), Tag x 82(1) respectively; index 7 increases by 1; other
transmitters keep silent and send nothing;

3. the base station receives the ith measurement y[i] = 1o X
81 (i)ohy +xg0 X 82(i)ohg +n(i); combined with the previ-
ously received measurements, information symbols are re-
constructed using the OMP algorithm;

4. repeat the steps (2) and (3) until two consequent recoveries
are the same [13]. Then, at time slot 7, the base station
sends out the sfop signal of frame 1, and this stop signal is
also treated as the start signal of frame 2;

5. transmitters Tx1 and Tx2 stop current frame I’s transmis-
sion and reset index 7 to 0;

6. starting from time slot 8, transmitters Tx1, Tx3 send z1; x
$1(4), 30 % 83(7), respectively; index ¢ is increased by 1;
other transmitters keep silent and send nothing;

7. base station receives the ith measurement y[i] = x1; x
$1{#) ohy + 230 X 83(¢) 0 hz + n(i); combined with previ-
ously received measurements, information symbols are re-
constructed (correct recoveries are 211, £30);

8. repeat steps (6) and (7) until two consequent recoveries
are the same. Then, at time slot 12, frame 2’s stop signal
is broadcasted by base station to inform Tx1, Tx3 to stop
Sframe 2’s transmission,

C. Transmitter Synchronization

As we have mentioned, the transmitters are assumed to be
perfectly synchronized in time. In practice, the synchronization
can be achieved in the following traditional ways:

o If each transmitter is equipped with a GPS and operates in
outdoor environments, their timing can be almost perfectly
synchronized.



MAO AND LI: A NOVEL MULTIPLE ACCESS SCHEME VIA COMPRESSED SENSING... 311
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1 Diy=xioXsiDy=rXsy  Du=xoXsu Dig=xy X5 Dyy=x X5y Dy=x,Xsy
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Saved
Tx2-Buf x x x x e X
Tx3-Buf X x Data¥ye X X X
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Fig. 2. The illustration of compressed multiple access transmission.

o The base station can broadcast a time synchronization sig-
nal pertodically such that all transmitters can keep track the
correct timing information.

In some cases, the perfect time synchronization cannot be
achieved, e.g., each transmitter keeps in the sleeping mode
for most of the time and cannot frequently listen to the time
synchronization signal. In this situation, we can adapt the re-
construction algorithm to a asynchronous manner. In this sub-
section, we consider adapting the OMP algorithm to an asyn-
chronous one.

First, we assume that each time slot is divided into T} + Timax
smaller chips, where Ty ax is the maximal time offset and T
is the number of chips for transmission within each time slot.
The time offsets of active transmitters k1, - -, kx are given by
Tki» **» Thy (measured in chips), respectively (7x;, < Tax)-

Then, the algorithm of asynchronous OMP is given in pro-
cedure 3. The performance will be evaluated in the numerical
simulations.

Algorithm 3 Asynchronous OMP algorithm
Receive signal r of multiple time slots.
Set the active set as empty and set the candidate set as
{1,2,---,m}.
for Residual signal is still large do
for All elements in the candidate set do
for All possible time offsets do
Shift the signature waveform according to the time
offset.
Compute the projection of the signature waveform
over the received signal.
if The projection is large then
Put the element into the active set.
Delete it from the candidate set.
Remove the corresponding signal from the received
signal r and obtain the residual signal.
end if
end for
end for
end for

D. Conditional Equivalence of 0-Norm and 1-Norm Optimiza-
tions

D.1 Noise-Free Case

To assure the performance of BP algorithm adopted at the
receiver, we need to assure the equivalence of the following two
optimization problems (denoted by PO and P1, respectively) [2]
when there is no noise and the signal is sufficiently sparse:

mgn 1%/l0, st.r=®Px 9)
and

rr;in l1xl1, s.t.r = ®x. (10)
Note that we discuss the received signal in only one time slot,
for notational simplicity. The conclusion can be extended to ob-
servations in multiple time slots straightforwardly.

When the elements of ® are identically distributed, the equiv-
alence has been proved in [2]. However, in our case, the ele-
ments may not be identically distributed since they are modu-
lated by channel gains, which could be non-uniform, and the
conclusions in [2] cannot be applied directly. Fortunately, the
following proposition assures the equivalence under certain con-
ditions, whose proof is given in the appendix. Note that the
quantity " measures the sparsity of the signal. Therefore, the
condition of the proposition is essentially the limit on the spar-
sity.

Proposition 1: Define event E(®, p) as that, V||x|lo < pm,
(P0O) and (P1) yield the same unique solution equaling x. Sup-
pose that 7' < C, there exists a p(C) such that

P(E(®,p(C)) =1 (11)

as m,n — 0o, where the randomness is over the selection of ®.

D.2 Noisy Channel Case

‘When noise exists, it is almost impossible to recover the orig-
inal signal precisely. Therefore, we can apply the noise-aware
version of (P1) in [14] to recover the original signal. The corre-
sponding optimization problem is given by

mxin 1=l st |lr —®x|2 <6 (12)
where J is a controlling constant. When § = 0, (12) degener-
ates to (10). The stability of optimization problem in (12) has
been discussed in [14], based on the assumption that the col-
umn vectors in ® have unit norm. We extend the conclusions
(Theorem 3.1) in [14] to the channel gain dependent random
matrix in this paper. We assume that noise n has bounded norm,
namely

[nfz <e. (13)

For unbounded noise, ||nflz > €, we can claim outage (or era-
sure) of the communication system. Then, € can be determined
by tolerable outage probability and noise distribution. Similar
to [14], we define the coherence for matrix ® as

M(®) £ max |¢?¢j|

= _ 14
o R (19
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which measures the linear dependency of columns in $. Based
on the definition of coherence, we have the following proposi-
tion (the proof is given in Appendix B)

Proposition 2: When the sparsity of data burst satisfies (re-

call that f is the ratio of k2 and A2,,)
F+M
<
lIxllo < a5 (15)
we have
N 1
[1%5,e (16)

—X|l, <
NN (I V(T )
where X; . is the recovered signal obtained from (12) and

2
A h’max

’Ymax -

(e+6)%

IV. NUMERICAL RESULTS

Numerical simulations have been carried out to evaluate the
performance of our proposed compressed multiple access. We
assume that the channel amplitude gain satisfies a Rayleigh
distribution within the interval [0.1, 10}, i.e., Amin = 0.1 and
hmax = 10,

Compressive sensing reconstruction algorithm OMP! is used
for compressed multiple access’ signal reconstruction process.
Because OMP is usually faster than other reconstruction algo-
rithms such as BP [7]; moreover, it can handle noisy compres-
sive measurements efficiently [15].2 We choose the simple slot-
ted CSMA as a baseline, which employs truncated binary expo-
nential back-off mechanism with the maximum delay of 1023
time slots [16]. We assume that 256 transmitters are associated
with a base station. Each transmitter generates data packet inde-
pendently, and interval between data packets of every transmit-
ter is exponentially distributed. By changing the rate parameter
(e.g., 0.43 data/slot means that there are averagely 0.43 active
transmitters in each time slot), effects of different data gener-
ation rates of traffic are tested. In each realization, 10000 time
slots are simulated. We use 100 realizations to obtain the trans-
mission delay statistics, including transmission delay’s mean
value and standard variance. The cumulative distribution func-
tion (CDF) of the number of active transmitters is provided in
Fig. 3, which shows that the number of active transmitters, as a
random variable, varies significantly.

The length of each data packet sent by transmitters is set
to 16 bits (e.g., temperature monitoring sensors report to con-
trol center). And for CSMA, we add a header for identifying
the reporting transmitters. Since 256 transmitters are deployed,
we add extra & bits for the transmitter ID. We assume that the
PAM-16 modulation is used, thus 4 bits are transmitted in ev-
ery successful transmitting time slot. Meanwhile, we assume
that the dimension of the vector channel is 2. For a fair com-
parison, we assume that the CSMA approach can transmit two

INote that OMP tries to directly solve the 0-norm optimization problem in-
stead of solving the 1-norm optimization problem.

2Note that BP is also modified to combat noise [19] However, the computa-
tional cost is much higher.
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data symbols over the two dimensions simultaneously. There-
fore, in the CSMA approach, all degrees of freedom in the
vector channel are used for multiplexing, while they are used
for multiple access in the compressed multiple access scheme
since the same data symbol is transmitted over all dimensions
of the vector channel. As a result, for the compressed multi-
ple access, a data needs 4 frames to transmit, while for CSMA,
it takes 3 transmitting time slots, when there are no compet-
ing transmitters. For instance, if the average interval between
two data packets of every transmitter is 1000 time slots, then
for each dimension of the vector channel, its data rate is 0.77,
i.e., 0.77 successful transmission is needed for each time slot
((16 + 8)/(4 x 2)) x 256/1000, “16 + 8” is the number of bits
of a data packet for CSMA, 16 bits data and 8 bits ID, “4 x 2”
is the number of bits transmitted each time slot, PAM-16 trans-
mits 4 bits per time slot and there are 2 dimensions, 256 trans-
mitters and 1000 is average interval). The signature waveform
uses random binary variables. We also assume that the chan-
nel gains H are uniformly distributed between —3 dB and 3 dB.
The assumption is reasonable if we consider the power control
of transmitters. The transmit power can be incorporated into the
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channel gains. Then, the randomness of the channel gain is from
the granularity of the power control (we assume that the transmit
power does not change continuously).

We first compare the performance of proposed compressed
multiple access and slotted CSMA under the situation that no
noise is presented. Under a very low data rate, CSMA has
a shorter average delay than the compressed multiple access.
However, when data rate changes from very low (averagely, 0.43
data generated per time slot) to medium or high data rate (0.64 or
0.77 data per time slot), CSMA’s average delay increases much
faster than compressed multiple access, as observed in Fig. 4.
Another key observation is that, regardless of the traffic load, the
proposed compressed multiple access scheme always achieves
much smaller variance of transmission delay (or, equivalently
jitter) than CSMA. This implies that the compressed multiple
access scheme is suitable for real-time traffic which has a rigor-
ous requirement for the delay.

We also test the influence of changing the number of trans-
mitters associated with the base station. The results are shown
in Figs. 6 and 7. By varying the number of nodes from 128 to
256, the mean value and standard variance of delays for both
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the compressed multiple access and CSMA increase. Again, the
mean value and standard variance of delays of CSMA increase
much faster than the compressed multiple access. This implies
an advantage of compressed multiple access, i.e., its delays are
concentrated in a much smaller range, which is critical for sys-
tem stability, as observed in Figs. 5 and 7. The CDF curves of
the delays are shown in Fig. 8 for both the compressed multi-
ple access and CSMA, as well as for both moderate and high
traffic loads (0.51 and 0.77 data packet per time slot). We can
observe that the compressed multiple access has much smaller
90% values of the delay (the 90% values are labeled in the fig-
ure). Quite often, a system’s transmission bottleneck is the tail
of long delays which may determine the whole system’s per-
formance. Therefore, the compressed multiple access is more
suitable to provide quality of service (QoS) and is more stable
when dealing with heavy traffic.

When noise presents, both CSMA and compressed multiple
access suffer, however, compressed multiple access preserves
its advantages of smaller variance and smaller 90% value of
transmission delays over CSMA. Fig. 9 shows that under both
data rates (high: 0.77 packet per time slot and moderate: 0.51
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packet per time slot), compressed multiple access always has
smaller variance of delays. As to mean value, under high data
rate and low SNR, compressed multiple access provides com-
petitive mean value of delays as CSMA does; under high data
rate and high SNR, compressed multiple access has smaller
mean value of delays than that of CSMA, therefore outperforms
CSMA. When data rate is moderate, CSMA has smaller mean
value of delays. But as SNR increases, the difference between
mean value of delays associated with CSMA and mean value
associated with compressed multiple access becomes smaller.
CDF curves of the delays with noise are shown in Fig. 10. This
figure is obtained when SNR is 35 dB and data rate is high (0.77
packet per time slot). As observed from Fig. 10, noise presents
challenges to compressed multiple access due to increased dif-
ficulty in reconstructing signal from measurements polluted by
noise [15]. But when SNR is high enough (above 30 dB), even
performance of compressed multiple access does deteriorate by
certain degree, it still has smaller 90% value of transmission de-
lays than that of CSMA.

To demonstrate the validity of the asynchronous OMP algo-
rithm in procedure 3, we have carried out simulations for a sin-
gle frame with 50 time slots. We assume that there are 20 users
and the number of active users change from 1 to 10, We assume
T, = 20 and Tiax = 0.5. When 7. = 0, the transmitters are
perfectly synchronous. We define an error as the event that the
estimated set of active users is wrong. Then, the error rates are
shown in Fig. 11 for various numbers of active users. We ob-
serve that the asynchronicity incurs some performance degrada-
tion; however, the error rate is still low even when the sparsity is
around 50% (when there are 10 active users). This significantly
demonstrates the validity of the proposed asynchronous OMP
algorithm. More detailed simulations will be carried in the fu-
ture.
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V. CONCLUSIONS

We have applied the technique of compressed sensing to com-
press the data transmission and transmitter identification in a
multiple access system with random data traffic. Collision is al-
lowed for the multiple access in a way similar to CDMA. A
protocol has been proposed to accomplish the proposed algo-
rithm. Numerical results have demonstrated the small average
and variance of delay for the proposed scheme, especially un-
der heavy traffic situation, compared with the traditional slotted
CSMA. This implies that our proposed multiple access scheme
is useful for realtime (soft) data traffic with QoS requirements.
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APPENDICES
I. Proof of Proposition 1

Proof: It has been shown in {2] and [3] that optimizations
P1 and PO are equivalent if the following conditions about ¢ are
satisfied, where J is an arbitrary subset of (1, -, m)
e C1: The minimum singular value of ®y is larger than n;
uniformly for J satisfying |J| < pin.
e C2: ||vll1 = m2v/n||v||2 uniformly for J satisfying |J| <
pan, where v = @ x;.
e C3: ||xsell1 > na||v]ls uniformly for J satisfying |J| <
psn, where v = —® jex ye,

We check the conditions C1-C3, separately. Throughout the
proof, we assume that J = {1,2, -+, k}, without loss of gener-
ality.

We first check condition C1. The proof follows the argument
of Lemma 3.1 in [3]. We define

1”Z2
?LZ ij

j=1

Nf

R; =

where {Z;;} are independent and identically distributed stan-
dard Gaussian random variables, being independent of ®. Let

R = diag ({ “I,f—:“}> and X = ®R 1. Then, we have

-2
Amin (27@) 2 Wi Amin (X5X ) (max R;)

where we applied the assumption that ||h;|| > Amin. The subse-
quent argument is the same as that of [3].

Next, we check condition C2. By applying the assumption
that hi; > humin, for any vector o € RIVI, we have

||'I’J0‘|11 =[Hyo SJCYHl

= Z ZHM‘ (8)5
I
2 hmin Z z (SI)U @y

i
= Amin HSJaul .
Following the same argument as in [3], we can show that C2
also holds.

Finally, we check condition C3. Similar to (5.4) in [3], we set
the following linear programming problem:

t}lin hye o dyel], st. ®yedye = —v. )]
JC
Applying the assumption that ~;; < hmayx, we have
1
167e ] 2 3= Iy 0 due]]. (18)
max

It is easy to check that the dual linear programming of (17) is
the same as that in [3].

Then, by applying Lemma 5.1 in [3], we have shown that
condition C3 holds with probability 1 as n, m — oo. This con-
cludes the proof. O

II. Proof of Proposition 2

Proof: The proof is the same as that of Theorem 3.1 in
{147 before the optimization problem (3.9) in [14]. We define
G = ®T®. The constraint ||®w||2 < A2, where A £ § + ¢,
implies

r A2
“Ymax h%‘nax
wlGw
- }l%lax
2 'y 1
e ”Wszw "}';72""""”(;“"’*1 w
max
. 1
> Il - i |7 G - 1|

—|w|" (1 - NI |w|

= (M + f)llwl - M |wl3. (19)

The following argument remains the same as that in [14].
Then, the condition (3.17) in [14] becomes

(f + M)V = MpV < ——.

Ymax

(20)

This concludes the proof. |
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