Acknowledgement
Supported by : NSF, ONR, AFOSR
References
- A. Miller, Subset Selection in Regression. Chapman and Hall, 1990.
- N.Meinshausen and P. Bühlmann, "High-dimensional graphs and variable selection with the lasso," Ann. Statist., vol. 34, no. 3, pp. 1436–1462, June 2006. https://doi.org/10.1214/009053606000000281
- S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Scientific Comput., vol. 20, no. 1, pp. 33–61, Jan. 1998. https://doi.org/10.1137/S1064827596304010
- G. Davis, S. Mallat, and M. Avellaneda, "Adaptive greedy approximations," in Constructive Approximation. New York, NY: Springer, Mar. 1997, vol. 13, no. 1, pp. 57–98.
- W. U. Bajwa, R. Calderbank, and S. Jafarpour, "Model selection: Two fundamental measures of coherence and their algorithmic significance," in Proc. ISIT, Austin, TX, June 2010, pp. 1568–1572.
- J. A. Tropp, "Norms of random submatrices and sparse approximation," in C. R. Acad. Sci., Ser. I, Paris, 2008, vol. 346, pp. 1271–1274.
- W. Alltop, "Complex sequences with low periodic correlations," IEEE Trans. Inf. Theory, vol. 26, no. 3, pp. 350–354, May 1980. https://doi.org/10.1109/TIT.1980.1056185
- T. Strohmer and R. Heath, "Grassmanian frames with applications to coding and communication," Appl. Comput. Harmon. Anal., vol. 14, no. 3, pp. 257–275, May 2003. https://doi.org/10.1016/S1063-5203(03)00023-X
- D. L. Donoho, "For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution," Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797–829, June 2006. https://doi.org/10.1002/cpa.20132
- C. Genovese, J. Jin, and L. Wasserman. Revisiting marginal regression. submitted. [Online]. Available: arXiv:0911.4080v1
- C. L. Mallows, "Some comments on Cp," Technometrics, vol. 15, no. 4, pp. 661–675, Nov. 1973. https://doi.org/10.2307/1267380
- H. Akaike, "A new look at the statistical model identification," IEEE Trans. Autom. Control, vol. 19, no. 6, pp. 716–723, Dec. 1974. https://doi.org/10.1109/TAC.1974.1100705
- P. Massart, "A non-asymptotic theory for model selection," in European Congress of Mathematics, A. Laptev, Ed., Stockholm, Sweden, 2005, pp. 309–323.
- G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, no. 2, pp. 461–464, 1978. https://doi.org/10.1214/aos/1176344136
- D. P. Foster and E. I. George, "The risk inflation criterion for multiple regression," Ann. Statist., vol. 22, no. 4, pp. 1947–1975, 1994. https://doi.org/10.1214/aos/1176325766
- B. K. Natarajan, "Sparse approximate solutions to linear systems," SIAM J. Comput., vol. 24, no. 2, pp. 227–234, Apr. 1995. https://doi.org/10.1137/S0097539792240406
- R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. Ser. B, vol. 58, no. 1, pp. 267–288, 1996.
- P. Zhao and B. Yu, "On model selection consistency of lasso," J. Mach. Learning Res., vol. 7, pp. 2541–2563, 2006.
- M. J.Wainwright, "Sharp thresholds for high-dimensional and noisy sparsity recovery using 1-constrained quadratic programming (lasso)," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2183–2202, May 2009.
- E. J. Candès and Y. Plan, "Near-ideal model selection by 1 minimization," Ann. Statist., vol. 37, no. 5A, pp. 2145–2177, Oct. 2009.
- V. Saligrama andM. Zhao. Thresholded basis pursuit: An LP algorithm for achieving optimal support recovery for sparse and approximately sparse signals from noisy random measurements. submitted to IEEE Trans. Inf. Theory. [Online]. Available: arXiv:0809.4883v3
- K. Schnass and P. Vandergheynst, "Average performance analysis for thresholding," IEEE Signal Process. Lett., vol. 14, no. 11, pp. 828–831, Nov. 2007.
- A. K. Fletcher, S. Rangan, and V. K. Goyal, "Necessary and sufficient conditions for sparsity pattern recovery," IEEE Trans. Inf. Theory, vol. 55, no. 12, pp. 5758–5772, Dec. 2009.
- G. Reeves and M. Gastpar, "A note on optimal support recovery in compressed sensing," in Proc. 43rd Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Nov. 2009.
- D. L. Donoho and I. M. Johnstone, "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol. 81, no. 3, pp. 425–455, 1994. https://doi.org/10.1093/biomet/81.3.425
- "Special issue on compressive sampling," IEEE Signal Process. Mag., vol. 25, no. 2, Mar. 2008.
- E. J. Candès and T. Tao, "The Dantzig selector: Statistical estimation when p is much larger than n," Ann. Statist., vol. 35, no. 6, pp. 2313–2351, Dec. 2007. https://doi.org/10.1214/009053606000001523
- S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397–3415, Dec. 1993. https://doi.org/10.1109/78.258082
- W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230– 2249, May 2009.
- D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301–321, 2009. https://doi.org/10.1016/j.acha.2008.07.002
- T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing," Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265– 274, 2009. https://doi.org/10.1016/j.acha.2009.04.002
- A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, "One sketch for all: Fast algorithms for compressed sensing," in Proc. STOC, San Diego, CA, June 2007, pp. 237–246.
- A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, andM. Strauss, "Nearoptimal sparse Fourier representations via sampling," in Proc. STOC, Montreal, Canada, May 2002, pp. 152–161.
- M. A. Iwen, "A deterministic sub-linear time sparse Fourier algorithm via non-adaptive compressed sensing methods," in Proc. SODA, San Francisco, CA, Jan. 2008, pp. 20–29.
- E. J. Candès, "The restricted isometry property and its implications for compressed sensing," in C. R. Acad. Sci., Ser. I, Paris, 2008, vol. 346, pp. 589–592. https://doi.org/10.1016/j.crma.2008.03.014
- L. Welch, "Lower bounds on the maximum cross correlation of signals," IEEE Trans. Inf. Theory, vol. 20, no. 3, pp. 397–399, May 1974. https://doi.org/10.1109/TIT.1974.1055219
- G. E. Pfander, H. Rauhut, and J. Tanner, "Identification of matrices having a sparse representation," IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5376–5388, Nov. 2008.
- M. A. Herman and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2275–2284, June 2009.
- J. A. Tropp, "On the conditioning of random subdictionaries," Appl. Comput. Harmon. Anal., vol. 25, pp. 1–24, 2008. https://doi.org/10.1016/j.acha.2007.09.001
- M. J. Wainwright, "Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting," IEEE Trans. Inf. Theory, vol. 55, no. 12, pp. 5728–5741, Dec. 2009.
- M. Akcakaya and V. Tarokh, "Shannon-theoretic limits on noisy compressive sampling," IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 492–504, Jan. 2010.
- D. V. Sarwate, "Meeting the Welch bound with equality," in Proc. SETA, 1998, pp. 79–102.
- M. Rudelson and R. Vershynin, "Non-asymptotic theory of random matrices: Extreme singular values," to appear in Proc. Int. Congr. of Mathematicians, Hyderabad, India, Aug. 2010.
- J. Lawrence, G. E. Pfander, and D. Walnut, "Linear independence of Gabor systems in finite dimensional vector spaces," J. Fourier Anal. Appl., vol. 11, no. 6, pp. 715–726, Dec. 2005. https://doi.org/10.1007/s00041-005-5017-6
- S. A. Gersgorin, "Über die abgrenzung der eigenwerte einer matrix," Izv. Akad. Nauk SSSR Ser. Fiz.-Mat., vol. 6, pp. 749–754, 1931.
- R. A. Devore, "Nonlinear approximation," in Acta Numerica, A. Iserles, Ed. Cambridge, U.K.: Cambridge University Press, 1998, vol. 7, pp. 51– 150.
- W. U. Bajwa, J. Haupt, G. Raz, and R. Nowak, "Compressed channel sensing," in Proc. CISS, Princeton, NJ, Mar. 2008, pp. 5–10.
- J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, "Toeplitz compressed sensing matrices with applications to sparse channel estimation," to appear in IEEE Trans. Inf. Theory, 2010.
- O. Christensen, Frames and Bases. Boston, MA: Birkhauser, 2008.
- W. U. Bajwa, A. M. Sayeed, and R. Nowak, "Learning sparse doublyselective channels," in Proc. 45th Annu. Allerton Conf. Commun., Control, and Computing, Monticello, IL, Sept. 2008, pp. 575–582
- C. McDiarmid, "On the method of bounded differences," in Surveys in Combinatorics, J. Siemons, Ed. Cambridge University Press, 1989, pp. 148–188.
- R. Motwani and P. Raghavan, Randomized Algorithms. New York, NY: Cambridge University Press, 1995.
- S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2479–2493, Jul. 2009.
- K. Azuma, "Weighted sums of certain dependent random variables," Tohoku Math. J., vol. 19, no. 3, pp. 357–367, 1967. https://doi.org/10.2748/tmj/1178243286
- S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. relax Upper Saddle River, NJ: Prentice Hall, 1998.