차세대 청각소자의 융합기술 연구동향

  • 허신 (한국기계연구원 나노융합생산시스템연구본부) ;
  • 이영화 (한국기계연구원 나노융합생산시스템연구본부) ;
  • 박준식 (한국기계연구원 나노융합생산시스템연구본부) ;
  • 김완두 (한국기계연구원 나노융합생산시스템연구본부) ;
  • 최홍수 (한국기계연구원 나노융합생산시스템연구본부)
  • 발행 : 2010.08.30

초록

본 논문은 인간의 청각기능을 보조하거나 대체할 수 있는 차세대 청각보조장치 및 완전 이식형 인공와우에 관련한 기술동향에 대해서 기술한다. 청각보조장치는 MEMS 마이크로폰과 음장가시화 기술을 기반으로 하여 청각정보를 시각적으로 전달하고자 하는 장치이다. 이를 위해서는 초소형 MEMS 마이크로폰의 최적화 및 실시간 음장가시화 기술 개발이 선행되어야 한다. 차세대 생체모사 인공와우 기술은 기존 인공와우의 단점인 잦은 충전, 장애 노출 등을 극복하고 향상된 음감을 전달할 수 있는 완전 이식형 인공와우로서 그 기술동향을 논하고자 한다.

키워드

참고문헌

  1. P.R. Scheeper, A.G.H. van der Donk, W. Olthuis and P. Bergveld, "A review of silicon microphones,"Sensors and Actuators A, Vol. 44, No. 1, pp. 1-11, 1994. https://doi.org/10.1016/0924-4247(94)00790-X
  2. A. Dehe, "Silicon microphone development and application,"Sensors and Actuators A, Vol. 133, No. 2, pp. 283-287, 2007. https://doi.org/10.1016/j.sna.2006.06.035
  3. R.D. White and K. Grosh", Microengineered hydromechanical cochlear model,"Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 5, pp. 1296-1301, 2004.
  4. M. Fuldner, "Modellierung und herstellung kapazitiver mikrofone in BiCMOS-technologie,"Universitat Erlangen-Nurnbert, Ph.D dissertation, 2004.
  5. M. Fuldner, A. Dehe and R. Lerch." Analytical analysis and finite element analysis of advanced membranes for silicon microphones,"IEEE Sensors Journal, Vol. 5, pp. 857-863, 2005. https://doi.org/10.1109/JSEN.2004.841449
  6. http://uk.farnell.com, http://www.knowles.com
  7. J. Neumann and K. Gabriel," CMOS-MEMS membrane for audio-frequency acoustic actuation,"Sensors and Actuators A, Vol. 95, pp. 175-182, 2002. https://doi.org/10.1016/S0924-4247(01)00728-2
  8. S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi and S. R. Kim, "Micromachined piezoelectric membrane acoustic device,"Sensors and Actuators A, Vol. 103, pp. 130-134, 2003. https://doi.org/10.1016/S0924-4247(02)00310-2
  9. W. S. Lee and S. S. Lee," Piezoelectric microphone built on circular diaphragm,"Sensors and Actuators A, Vol. 144, pp. 367-373, 2008. https://doi.org/10.1016/j.sna.2008.02.001
  10. W. F. King III and D. Bechert, "On the sources of wayside noise generated by high-speed trains,"J. Sound and Vibration, Vol. 66, No. 3, pp. 311-332, 1979. https://doi.org/10.1016/0022-460X(79)90848-4
  11. 최영철, 김양한"실내 공간에서의 음원 탐지 방법,"한국소음진동공학회지, 제 12권, 제 7호, pp. 520-526, 2002.
  12. H. Kwon and Y. Kim, "Moving frame technique for planar acoustic holography,"J. Acoust. Soc. Am., Vol. 103, pp. 1734-1741, 1998. https://doi.org/10.1121/1.421375
  13. S. Park and Y. Kim, "An improved moving frame acoustic holography for coherent band-limited noise," J. Acoust. Soc. Am., Vol. 104, pp. 3179-3189, 1998. https://doi.org/10.1121/1.423958
  14. J. Jeon and Y. Kim, "Localization of moving periodic impulsive source in a noisy environment,"Mechanical Systems and Signal Processing, Vol. 22, pp. 753-759, 2008. https://doi.org/10.1016/j.ymssp.2007.09.001
  15. http://soundmasters.kaist.ac.kr/
  16. C. Park and Y. Kim, "Spatial complex envelope of acoustic field: Its definition and characteristics,"Korean Soc. for Noise and Vibration Engineering, Vol. 17, pp. 693-700, 2007. https://doi.org/10.5050/KSNVN.2007.17.8.693
  17. L. Robles and M.A. Ruggero, "Mechanics of the mammalian cochlea,"Physiological Reviews, Vol. 81, No. 3, pp. 1305-1352, 2001.
  18. M.J. Wittbrodt, "A life-sized model of the human cochlea: design, analysis, fabrication, and measurements,"Ph.D Thesis, Boston University, 2005.
  19. J.L. Flanagan, "Computational model for basilarmembrane displacement,"The Journal of the Acoustical Society of America, Vol. 34, No. 8, pp. 1370-1376, 1962. https://doi.org/10.1121/1.1918351
  20. N. Mukherjee, R.D. Roseman, J.P. Willging, "The piezoelectric cochlear implant: concept, feasibility, challenges, and issues,"Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 53, No. 2, pp. 181-187, 2000. https://doi.org/10.1002/(SICI)1097-4636(2000)53:2<181::AID-JBM8>3.0.CO;2-T
  21. H. Shintaku, T. Nakagawa, D. Kitagawa, H. Tanujaya, S. Kawano, J. Ito, "Development of Piezoelectric Acoustic Sensor with Frequency Selectivity for Artificial Cochlea,"Sensors and Actuators A: Physical, Vol. 158, No. 2, pp. 183-192, 2010. https://doi.org/10.1016/j.sna.2009.12.021
  22. Z.L. Wang and J. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,"Science, Vol. 312, pp. 242-246, 2006. https://doi.org/10.1126/science.1124005
  23. S. Hur, S.Q. Lee, and H. S. Choi, "Fabrication and characterization of PMN-PT single crystal cantilever array for cochlear-like acoustic sensor,"Journal of Mechanical Science and Technology, Vol. 24, pp. 181-184, 2010. https://doi.org/10.1007/s12206-009-1140-7
  24. P. V. Loepert and S. B. Lee," The first commercialized MEMS microphone," Solid-State Sensors, and Microsystems Workshop, Hilton Head Island, South Carolina, June 4-8, 2006.
  25. "MEMS Microphones-A Global Technology, Industry and Market Analysis,"Innovative Research and Products, Inc., 2007.
  26. "The Market for Neurotechnology: 2006-2010," Neurotech Reports, 2007.