An Admission Control for End-to-end Performance Guarantee in Next Generation Networks

Next Generation Networks에서의 단대단 성능 보장형 인입제어

  • 정진우 (상명대학교 컴퓨터과학부) ;
  • 최정민 (상명대학교 컴퓨터과학부)
  • Received : 2010.01.11
  • Accepted : 2010.08.03
  • Published : 2010.08.31

Abstract

Next Generation Networks (NGN) is defined as IP-based networks with multi-services and with multi-access networks. A variety of services and access technologies are co-existed within NGN. Therefore there are numerous transport technologies such as Differentiated Services (DiffServ), Multi-protocol Label Switching (MPLS), and the combined transport technologies. In such an environment, flows are aggregated and de-aggregated multiple times in their end-to-end paths. In this research, a method for calculating end-to-end delay bound for such a flow, provided that the information exchanged among networks regarding flow aggregates, especially the maximum burst size of a flow aggregate entering a network. We suggest an admission control mechanism that can decide whether the requested performance for a flow can be met. We further verify the suggested calculation and admission algorithm with a few realistic scenarios.

Next Generation Networks(NGN)는 IP 기반 멀티서비스, multi-access 네트워크로 정의할 수 있다. 여러 종류의 서비스와 access기술이 공존함에 따라 access 네트워크나 코어 네트워크에서의 다양한 전송기술 채택이 NGN의 자연스러운 진화의 방향으로 자리 잡았다. Differentiated Services (DiffServ)와 Multi-protocol Label Switching(MPLS), 혹은 이들이 혼합된 형태의 전송기술들이 복합된 전송 네트워크를 통과하는 플로우들은 통합과 분리를 반복해서 경험하게 된다. 본 연구에서는 이런 환경 하에서 플로우의 단대단 (End-to-end) 지연시간 최대치를 구하는 방법을 제시한다. 이 방법은 네트워크 간 통합플로우에 관한 정보, 특히 각 네트워크에서의 통합플로우별 최대 인입 burst size 값을 교환하는 것을 가정한다. 이를 기반으로, 요청된 단대단 성능 요구를 만족하는지를 판별하고 admission 여부를 정하는 기준을 제시한다. 더 나아가 몇 가지의 실제상황에 가까운 시나리오를 가지고 simulation하여 이 기준을 평가해 본다.

Keywords

References

  1. ITU-T Recommendation Y.1541, Network performance objectives for IP-based services, Feb., 2006.
  2. ITU-T Recommendation Y.1542, Framework for achieving end-to-end IP performance objectives, July, 2006.
  3. ITU-T Recommendation Y.2122, Flow Aggregate Informatìon Exchange Functions in NGN, 2009.
  4. D. Stiliadis and A. Varma, Latency-Rate servers: A general model for analysis of traffic scheduling algorithms, IEEE/ACM Trans. Networking, Vol.6, No.5 Oct., 1998.
  5. A. Charny and J.-Y. Le Boudec, Delay bounds in a network with aggregate scheduling, In Proc. First International Workshop of Quality of Future Internet Services (QOFIS), 2000.
  6. J. Joung, Feasibility of Supporting Real-Tirne Traffic in DiffServ Architecture, in Proc. of WWIC 2007, also in LNCS Vol.4517, pp.189-200, May, 2007.
  7. F. Ciucu, A. Burchard, and J. Liebeherr, A Network Service Curve Approach for the Stochastic Analysis of Networks, in Proc. of SIGMETRICS, June, 2005.
  8. D. Clark, S. Shenker, and L. Zhang, Supporting Real- Time Applications in an Integrated Services Packet Network: Architecture and Mechanism, in Proc. SIGCOMM '92, Sep., 1992.
  9. W. Sun and K. G. Shin, End-to-End Delay Bounds for Traffic Aggregates Under Guaranteed-Rate Scheduling Algorithms, IEEE/ACM Transactions on Networking, Vol.13, No.5, Oct., 2005.
  10. K. Kompella and Y. Rekhter, Label Switched Paths (LSP) Hierarchy with Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE), IETF RFC 4206, 2005.
  11. J. Joung, J. Song, and S.S. Lee, Flow Aggregation Criteria in Networks with Rate-Guaranteeing Servers, 한국통신학회논문지 33권 12호, 2008년 12월.