다수 동영상 전송을 위한 IEEE 802.11e HCCA의 효과적인 대역폭 보장기법

A Scheme of efficient Bandwidth Guarantee for Multiple Video Transmission of IEEE 802.11e HCCA

  • 김영환 (연세대학교 컴퓨터정보통신공학부 정보통신망연구실) ;
  • 석정봉 (연세대학교 컴퓨터정보통신공학부 정보통신망연구실)
  • 투고 : 2010.02.07
  • 심사 : 2010.08.04
  • 발행 : 2010.08.31

초록

오늘날, 다수의 사용자들 사이에서 화상회의 및 영상보안 시스템을 위한 영상 어플리케이션들은 다수의 동영상 연결 및 QoS 보장을 요구하고 있다. 동영상 시스템들은 광대역 무선 전송과 저비용 인터넷 접속을 위해 IEEE 802.11 무선 랜 장치를 채택한다. 그러나 현재의 IEEE 802.11e HCCA 표준에 따르면 동영상 전송을 위한 TSID는 두 개뿐이므로, 3개 이상의 동영상 세션이 하나의 무선 랜 단말에서 설정될 때, 동영상 세션들은 서로의 TXOP을 공유해야만 한다. 이 문제를 해결하기위해서, 기존 표준과 호환성을 유지하면서, 최대 15개까지 동영상세션을 설정할 수 있도록 프레임구조를 수정하였다. 제안방식은 NCTUns 4.0 네트워크 시뮬레이터와 실제 동영상데이터를 활용하여 수신량 및 PSNR 성능을 평가하였다. 그 결과, 500ms의 지연시간 안에 기존방식의 정상 동영상 세션이 약 75%를 수신한 반면, 제안방식은 97%이상을 수신하였다.

In these days, video applications for special purposes such as video conference systems among multiple users and video surveillance systems require multiple video connections and QoS guarantee. The video systems employ IEEE 802.11 Wireless LAN devices to support broadband wireless interfaces and easy internet accesses for cheaper prices. However, according to the current IEEE 802.11e HCCA standard, if more than three video sessions are established in WSTA services, some of them must share the TXOP because the available number of TSIDs for video transmission is two. In order to resolve the problem, we devised a method which can establish up to 15 video sessions by slightly modifying the frame structure while maintaining the compatibility with current standard. Our method is implemented on the NCTUns 4.0 network simulator, and evaluated not only numerically in terms of throughput, delay, and PSNR, but also experimentally in the sense of real video clips that are used as input to our simulation. The results showed that our method sufficiently guarantees the transmission bandwidth requested by each video session.

키워드

참고문헌

  1. ANSI/IEEE Std 802.11 [ISO/IEC 8802-11: 1999(E)], "Part 11: Wireless LAN MAC and PHY Specifications", LAN/MAN Standards Committee of the IEEE Computer Society, 1999 Edition.
  2. IEEE Std 802.11g Std., "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications / Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band", 2003.
  3. IEEE Std 802.11e Std., "Part 11: Medium Access Control (MAC) Enhancements for Quality of Service (QoS)", 2005.
  4. D. Gao, J. Cai, and C.-W. Chen, "Admission Control Based on Rate-Variance Envelop for VBR Traffic Over IEEE 802.11e HCCA WLANs," IEEE Transactions on Vehicular Technology, Vol.57, No.3, 2008.
  5. M.-M. Rashid, E. Hossain, and V.-K. Bhargava, "Controlled Channel Access Scheduling for Guaranteed QoS in 802.11e-Based WLANs," IEEE Transactions on Wireless Communications, Vol.7, No.4, 2008.
  6. C.-T. Chou, S.-N. Shankar, and K.-G. Shin, "Achieving Per-Stream QoS withDistributed Airtime Allocation and Admission Control in IEEE 802.11e Wireless LANs," IEEE INFOCOM '05, Vol.3, pp.1584-1595, 2005.
  7. A. Grilo, M. Macedo, and M. Nunes, "A scheduling Algorithm for QoS Support in IEEE 802.11e Networks", IEEE Wireless Communications, pp.36-43, 2003. https://doi.org/10.1109/MWC.2003.1209594
  8. C. Cicconetti, L. Lenzini, E. Mingozzi, and G. Stea, "Design and Performance Analysis of The Real-time HCCA Scheduler for IEEE 802.11e WLANs", Computer Networks, Vol.51, pp.2311-2325, 2007. https://doi.org/10.1016/j.comnet.2007.01.027
  9. C. Cicconetti, L. Lenzini, E. Mingozzi, and G. Stea, "An Efficient Cross Layer Scheduler for Multimedia Traffic in Wireless Local Area Networks with IEEE 802.11e HCCA", Mobile Computing and Communications Review, Vol.11 pp.31-46, 2007. https://doi.org/10.1145/1317425.1317428
  10. A. Foronda, Y. Higuchi, C. Ohta, M. Yoshimoto, and Y. Okada, "Service Interval Optimization with Delay Bound Guarantee for HCCA in IEEE 802.11e WLANs", IEEE Transactions on Communications, E90-B, pp.3158-3169, 2007. https://doi.org/10.1093/ietcom/e90-b.11.3158
  11. D. Gao, J. Cai, and L. Zhang, "Physical Rate-Based Admission Control for HCCA in IEEE 802.11e WLANs," in Proc. of the IEEE 19th Int'l. Conf. Adv. Info. Net. and Apps., Taiwan, Mar. 2005.
  12. Y.-H. Kim, H.-R. Park, J.-B. Suk, "Bandwidth Guarantee per Session for Video Transmission over IEEE 802.11e HCCA," IEEE CCNC 2010, Jan. 2010.
  13. NCTUns, http://nsl.csie.nctu.edu.tw/nctuns.html.
  14. S.-Y. Wan, C.-L. Chou, and C.-C. Lin, "Simulation Modelling Practice and Theory : The Designed and Implementation of the NCTUns Network Simulation Engine," Elsevier, Vol.15, pp.57-81, 2007. https://doi.org/10.1016/j.simpat.2006.09.013
  15. T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC Video Coding Standard," IEEE Trans. Circuits and Systems for Video Technology, Vol.13, No.7, pp.560-576, 2003.
  16. x264/AVC codec, http://www.videolan.org/developers/x264.html
  17. J.-F. McGowan, "AVI Overview," http://jmcgowan.com/avi.html.
  18. S. Khan, S. Duhovnikov, E. Steinbach, and W. Kellerer, "Advances in Multimedia : MOS-Based Multiuser Multiapplication Cross-Layer Optimization for Mobile Multimedia Communication," Hindawi Publishing co., Vol.'07, 2007.
  19. N. Thomas, N.-V. Boulgouris, M.-G. Strintzis, "Product Code Optimization for Determinate State LDPC Decoding in Robust Image Transmission," IEEE Transactions on Image Processing, Vol.15, No 8, pp.2113-2119, 2006. https://doi.org/10.1109/TIP.2006.877433
  20. X. Li, J. Cai, "Robust Transmission of JPEG2000 Encoded Images Over Packet Loss Channels," ICME 2007, pp.947-950, 2007.