DOI QR코드

DOI QR Code

트리거 모델에 따른 일방향 케블라/에폭시 복합재 튜브의 축방향 압괴 거동 연구

Study on Axial Crushing Behaviors of UD Kevlar/Epoxy with Different Trigger Models

  • 김형욱 (과학기술연합대학원대학교 가상공학과) ;
  • 김정석 (한국철도기술연구원 철도구조연구실) ;
  • 정현승 (한국철도기술연구원 철도구조연구실) ;
  • 윤혁진 (한국철도기술연구원 철도구조연구실) ;
  • 권태수 (한국철도기술연구원 정책전략연구실)
  • 발행 : 2010.08.31

초록

본 논문에서는 일방향 케블라/에폭시 튜브에 대한 현실적인 트리거 모델링을 개발하기 위해 수치해석 모델이 확립하고 시험결과와 비교를 통해 검증하였다. 이를 위해, 4가지 트리거 모델을 제안하고 각각에 대해 상용 외연적 해석 프로그램인 LS-DYNA을 이용하여 유한요소 해석을 통해 축방향 압괴특성을 규명하였다. 유한요소해석에서는 2D 쉘요소와 Chang-Chang 파손기준식을 이용하였다. 또한, 해석에 적용된 소재의 기계적 물성치는 시험을 통해 얻었다. 해석모델은 원형 튜브에 대한 10mm/min의 준정적 압괴시험결과와 비교를 통해 검증하였다. 그 결과 케블라/에폭시 튜브의 하중-변위 곡선은 거의 일치했으며 무게당 흡수 에너지 (SEA)도 5% 미만의 오차에서 잘 일치하였다.

In this paper, in order to develop a realistic trigger model for a unidirectional Kevlar/Epoxy tube, the numerical model has been established and then verified by comparison with the experimental result. To achieve this goal, four different trigger models were candidated and evaluated using the commercial explicit FE code LS-DYNA. In the finite element analysis, the 2D shell element and Chang-Chang failure criterion was used. Mechanical material properties for the model were obtained by material testing in advance. The numerical results were compared with quasi-static test results under axial compressive loading at 10mm/min. The load-crushed displacement curves were very close to the experiments and SEA (specific energy absorption) showed a good agreement with experimental one within less than 5%.

키워드

참고문헌

  1. C. Kindervater, "The Crashworthiness of Composite Aerospace Structures," Workshop, the Crashworthiness of Composite Transportation Structures, TRL, Crowthorne, 3rd October, 2002.
  2. M. Wacker and M. Hormann, "Simulation of the Crash Performance of Crash Boxes based on Advanced Thermoplastic Composite," 22nd CAD-FEM Users' Meeting 2004 International Congress on FEM Technology with ANSYS CFX & ICEM CFD Conference, 2004, Internati onal Congress Center Dresden, Germany.
  3. Jiancheng Huang, Xinwei Wang, "Numerical and experimental investigations on the axial crushing response of composite tubes," Composite Structures, Vol. 91, 2009, pp. 222-228. https://doi.org/10.1016/j.compstruct.2009.05.006
  4. H El-Hage, P K Mallick, and N Zamani, "Numerical modelling of quasi-static axial crush of square aluminum-composite hybrid tubes," International Journal of Crashworthiness, Vol. 9, Issue 6, January, 2004, pp. 653-664. https://doi.org/10.1533/ijcr.2004.0320
  5. 김정석, 윤혁진, 이호선, 최경훈, "강화 섬유에 따른 준 정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구," 한국복합재료학회, 제22권, 제6호, 2009, pp. 32-38.
  6. D.P. Flanagan, T. Belytschko, "A uniform strain hexahedron and quadrilateral with orthogonal ho urglass control," Int. J. Numer. Methods Eng, 17, 1981, pp. 679-706. https://doi.org/10.1002/nme.1620170504
  7. Chang, F.K., and Chang, K.Y., "Post-Failure Analysis of Bolted Composite Joints in Tension or Shear-Out Mode Failure," J. of Composite Materials, 21, 1987, pp. 809-833. https://doi.org/10.1177/002199838702100903
  8. Chang, F.K., and Chang, K.Y., "A Progressive Damage Model for Laminated Composites Containing Stress Concentration," J. of Composite Materials, 21, 1987, pp. 834-855. https://doi.org/10.1177/002199838702100904
  9. Hanshin, Z, "Failure Criteria for Unidirectional Fiber Composites," Journal of Applied Mechanics, 47, 1980, pp. 329. https://doi.org/10.1115/1.3153664
  10. Livermore Software Technology Corporation, "L S-DYNA user's manual (nonlinear dynamic analysis of structures in three dimensions)," 1997.
  11. B.D. Davidson and V. Sundararaman, "A single leg bending test for interfacial fracture toughness determination," Int J Fract. Vol. 78, 1996, pp. 193-210. https://doi.org/10.1007/BF00034525
  12. "Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites," ASTM STP D 6115.
  13. "Standard Test Method for Measurement of Fatigue Crack Growth Rates," ASTM STP E 647.