THz대역 소자의 개발 동향 및 MEMS 기술의 접목

  • 정기훈 (한국과학기술원 바이오 및 뇌공학과) ;
  • 박상길 (한국과학기술원 바이오 및 뇌공학과) ;
  • 박현철 (한국과학기술원 바이오 및 뇌공학과) ;
  • 김재준 (한국과학기술원 바이오 및 뇌공학과)
  • Published : 2010.07.31

Abstract

Keywords

References

  1. UC Berkeley Ming C. Wu 교수연구팀, http://nanophotonics.eecs.berkeley.edu/
  2. S. Kwon, L. P. Lee, "Micromachined transmissive scanning confocal microscope", Optics Letters, vol. 29, no. 7, pp. 706-708, 2004. https://doi.org/10.1364/OL.29.000706
  3. H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto, "A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope", Journal of Microelectromechanical Systems, vol. 12, no. 3, pp. 243-251, 2003. https://doi.org/10.1109/JMEMS.2003.809961
  4. L. Wu, H. Xie, "A large vertical displacement electrothermal bimorph microactuator with very small lateral shift", Sensors and Actuators A: Physical, 145-146, pp. 371-379, 2008. https://doi.org/10.1016/j.sna.2007.10.068
  5. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array", Opt. Express, vol. 12, pp. 2494-2500, 2004. https://doi.org/10.1364/OPEX.12.002494
  6. R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, "A flat high-frequency scanning micromirror", A Solid-State Sensors, Actuators and Microsystems Hilton Head Workshop, 2000.
  7. H. Lorenza, M. Despontb, N. Fahrnia, J. Bruggerb, P. Vettigerb, and P. Renauda, "High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS", Sensors and Actuators A: Physical, vol. 64, no. 1, pp. 33-39, 1998. https://doi.org/10.1016/S0924-4247(98)80055-1
  8. J. J. Kim, S. Chae, and K. H. Jeong, "Micropatterned single lens for wide-angle light-emitting diodes", Optics Letters, vol. 35, no. 6, pp. 823-825, 2010. https://doi.org/10.1364/OL.35.000823
  9. H. C. Park, C. Song, and K. H. Jeong, "Micromachined lens microstages for two-dimensional forward optical scanning", Optics Express, vol. 18, pp. 16133-16138, 2010. https://doi.org/10.1364/OE.18.016133
  10. M. C. Wu, "Micromachining for optical and optoelectronic systems", Proceedings of The IEEE, vol. 85, no. 11, pp. 1833-1856, 1997. https://doi.org/10.1109/5.649660
  11. M. Tonouchi, "Cutting-edge terahertz technology", Nature Photonics, vol. 1, no. 2, pp. 97-105, 2007. https://doi.org/10.1038/nphoton.2007.3
  12. D. Grischkowsky, N. Katzenellenbogen, "Femtosecond pulses of terahertz radiation: Physics and applications", OSA Proceedings on Picosecond Electronics and Optoelectronics edited by G. Sollner and J. Shah, 9, pp. 9-14, 1991.
  13. H. Harde, D. Grischkowsky, "Coherent transients excited by subpicosecond pulses of terahertz radiation", Journal of Optical Society of America, vol. 8, pp. 1642-1651, 1991. https://doi.org/10.1364/JOSAB.8.001642
  14. N. Katzenellenbogen, D. Grischkowsky, "Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metalsemiconductor interface", Applied Physics Letters, vol. 58, pp. 222-224, 1991. https://doi.org/10.1063/1.104695
  15. G. Matthaus, S. Nolte, "Microlens coupled interdigital photoconductive switch", Applied Physics Letters, vol. 93, no. 9, pp. 091110-091113, 2008. https://doi.org/10.1063/1.2976162
  16. S. G. Park, Y. Choi, and K. H. Jeong, "High power, THz photoconductive antenna using localized surface plasmon resonance", IEEE Optical MEMS and Nanophotonics, Sapphoro, Japan, 2010.
  17. M. V. Exter, D. R. Grischkowsky, "Characterization of an optoelectronic terahertz beam system", IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 11, pp. 1684-1691, 1990. https://doi.org/10.1109/22.60016
  18. C. Lin, C. Chen, A. Sharkawy, G. J. Schneider, S. Venkataraman, and D. W. Prather, "Efficient terahertz coupling lens based on planar photonic crystals on silicon on insulator", Optics Letters, vol. 30, no. 11, pp. 1330-1332, 2005. https://doi.org/10.1364/OL.30.001330
  19. J. Lee, K. Lee, H. Park, G. Kang, D. Yu, and K. Kim, "Tunable subwavelength focusing with dispersion- engineered metamaterials in the terahertz regime", Optics Letters, vol. 35, no. 13, pp. 2254-2256, 2010. https://doi.org/10.1364/OL.35.002254
  20. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active metamaterial terahertz devices", Nature, vol. 444, pp. 597-600, 2006. https://doi.org/10.1038/nature05343
  21. J. Han, A. Lakhtakia, and C. W. Qiu, "Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability", Optics Express vol. 16, pp. 14390-14396, 2008. https://doi.org/10.1364/OE.16.014390
  22. J. Han, A. Lakhtakia, "Semiconductor split-ring resonators for thermally tunable terahertz metamaterials", Journal of Modern Optics, vol. 56, no. 4, pp. 554-557, 2009. https://doi.org/10.1080/09500340802621785
  23. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequencyagile terahertz metamaterials", Nature Photonics, vol. 2, pp. 295-298, 2008. https://doi.org/10.1038/nphoton.2008.52
  24. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, "Reconfigurable terahertz metamaterials", Physical Review Letters, vol. 103, pp. 147401-147404, 2009. https://doi.org/10.1103/PhysRevLett.103.147401
  25. A. Bergner, U. Heugen, E. Bründermann, G. Schwaab, M. Havenith, D. R. Chamberlin, and E. E. Haller, "New p-Ge THz laser spectrometer for the study of solutions: THz absorption spectroscopy of water", Review of Scientific Instruments, vol. 76, no. 6, p. 063110, 2005. https://doi.org/10.1063/1.1928427
  26. S. Komiyama, O. Astaflev, V. Antonov, T. Kutsuwa, and H. Hirai, "A singlephoton detector in the far- infrared range", Nature, vol. 403, pp. 405-407, 2000. https://doi.org/10.1038/35000166