유전 알고리즘을 사용한 유도전동기 고장진단

  • 이홍희 (울산대 전기전자정보시스템공학부)
  • Published : 2010.08.20

Abstract

Keywords

References

  1. Sugumaran, V., Muralidharan, V., and Ramachandran,K. I. Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process., 2007. 21. pp. 930-942. https://doi.org/10.1016/j.ymssp.2006.05.004
  2. Sun,W ., Chen. J., and Li, J. Decision tree and PCA-based fault diagnosis of rotating machinery. Mech. Syst. Signal Process., 2007. 21. pp. 1300-1317. https://doi.org/10.1016/j.ymssp.2006.06.010
  3. Yang, B. S., Park, C. H., and Kim, H. J. An efficient method of vibration diagnostics for rotating machinery using a decision tree. Int. J. Rotating Mach., 2000. 6(1). pp. 19-27. https://doi.org/10.1155/S1023621X00000038
  4. Lim,D. S., Yang.B. S., and Kim,D. J. An expert system for vibration diagnosis of rotating machinery using decision tree. Int. J. COMADEM. 2000. 3. pp. 31-36.
  5. Yang,Y., Yu,D., and Cheng, J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM.Measurement. 2007. pp. 40. pp. 943-950. https://doi.org/10.1016/j.measurement.2006.10.010
  6. Samanta, B. and AI-Balushi, K. R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mech. Syst. Signal Process., 2003, 17, pp. 317-328. https://doi.org/10.1006/mssp.2001.1462
  7. Samanta, B., Al-Balushi, K. R., and Al-Araimi, S. A. Artificial neural networks and genetic algorithm for bearing fault detection. Soft Comput., 2006, 10, pp. 264-271. https://doi.org/10.1007/s00500-005-0481-0
  8. Lei,Y., He, Z., Zi,Y., and Hu,Q. Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mech. Syst. Signal Process., 2007, 21, pp. 2280-2294. https://doi.org/10.1016/j.ymssp.2006.11.003
  9. Benbouzid. M. E. H. and Kliman. G. B. What stator current processing-based technique to use for induction motor rotor faults diagnosis. IEEE Trans. Energy Convers., 2003, 18(2), pp. 238-244. https://doi.org/10.1109/TEC.2003.811741
  10. Combastel, C., Lesecq, S., Petropol. S., and Gentil. S. Model-based and wavelet approaches to induction motor on-line fault detection. Control Eng. Pract., 2002, 10(5), pp. 493-509. https://doi.org/10.1016/S0967-0661(01)00158-7
  11. Kim, K. and Parlos, A. G. Model-based fault diagnosis of induction motors using non-stationary signal segmentation. Mech. Syst. Signal Process., 2002, 16(2.3), pp. 223-253. https://doi.org/10.1006/mssp.2002.1481
  12. Lim, H. S., Chong,K. T., and Su, H.Motor fault detection method for vibration signal using FFT residuals. Int. J. Appl. Electromagn.Mech., 2006, 24(3.4), pp. 209-223.
  13. Niu, G., Son, J. D., Widodo. A., Yang, B. S., Hwang. D. H., and Kang. D. S. A comparison of classifier performance for fault diagnosis of induction motor using multi type signals. Struct. HealthMonit., 2007, 6(3), pp. 215-229. https://doi.org/10.1177/1475921707081110
  14. Quinlan. J. R. C4.5: programs for machine learning. 1993 (Morgan Kaufmann Publisher. Inc., San Mateo. California).
  15. The C4.5 code comes from the Internet. available from http://rulequest.com/personal/c4.5r8.tar.gz
  16. Rao, J. S. Vibratory condition monitoring of machines, 2003, pp. 361-382 (Alpha Science International Ltd. Pangbourne. UK).