초록
3D 얼굴 추적(Face tracking)은 보안감시, HCI(Human-Computer Interface), 엔터테인먼트(Entertainment)등 컴퓨터 비전과 관련된 여러 분야의 핵심 기술로서 많은 연구가 진행되고 있다. 하지만, 광범위한 응용분야에도 불구하고 3D 얼굴 추적의 기본적인 높은 연산 비용으로 인하여 그 응용 분야가 모바일 단말기 등의 저 사양 플랫폼에는 많은 한계가 있어왔다. 본 논문에서는 이러한 3D얼굴 추적의 연산 비용을 효과적으로 해결하고 폭 넓게 응용 분야를 확대하기 위하여 MLESAC(Maximum Likelihood Estimation by Sampling Consensus)을 이용한 움직임 추정(Motion Estimation) 기법과 기존의 파티클 필터(Particle Filter)를 결합하여 실행 속도 면에서 빠르면서도 성능 면에서도 우수한 3D 얼굴 추적 알고리즘을 제안한다.
3D face tracking is one of essential techniques in computer vision such as surveillance, HCI (Human-Computer Interface), Entertainment and etc. However, 3D face tracking demands high computational cost. It is a serious obstacle to applying 3D face tracking to mobile devices which usually have low computing capacity. In this paper, to reduce computational cost of 3D tracking and extend 3D face tracking to mobile devices, an efficient particle filtering method using MLESAC(Maximum Likelihood Estimation SAmple Consensus) motion estimation is proposed. Finally, its speed and performance are evaluated experimentally.