References
-
Abad, F., Maroto, R., Lopez, M. G., Sánchez-García, P. and
García, A. G. (1995). Pharmacological protection against the
cytotoxicity of 6-hydroxydopamine and
$H_2O_2$ in chromaffin cells. Eur. J. Pharmacol. 293, 55-64. https://doi.org/10.1016/0926-6917(95)90018-7 - Black, B. L. and Olson, E. N. (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167-196. https://doi.org/10.1146/annurev.cellbio.14.1.167
- Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R. and Verna J. M. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Pro. Neurobiol. 65, 135-172. https://doi.org/10.1016/S0301-0082(01)00003-X
- Bournival, J., Quessy, P. and Martinoli, M. G. (2009). Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol. Neurobiol. 29, 1169-1180. https://doi.org/10.1007/s10571-009-9411-5
- Bove, J., Prou, D., Perier, C. and Przedborski, S. (2005). Toxininduced models of Parkinson's disease. NeuroRx. 2, 484-494. https://doi.org/10.1602/neurorx.2.3.484
- Brunet, A., Datta, S. R. and Greenberg, M. E. (2001). Transcriptiondependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297-305. https://doi.org/10.1016/S0959-4388(00)00211-7
- Chang, C. S. and Jeon, J. I. (2004). Foliar flavonoids of Carpinus, sect. Distegocarpus in eastern Asia. Biochem. Syst. Ecol. 32, 35-44. https://doi.org/10.1016/S0305-1978(03)00186-8
- Choi, W. S., Yoon, S. Y., Oh, T. H., Choi, E. J., O'Malley, K. L. and Oh, Y. J. (1999). Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic cell death: role of caspases, ROS and JNK. J. Neurosci. Res. 57, 86-94. https://doi.org/10.1002/(SICI)1097-4547(19990701)57:1<86::AID-JNR9>3.0.CO;2-E
- Chong, Z. Z., Li, F. and Maiese, K. (2005). Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol. Histopathol. 20, 299-315.
- Decker, D. E., Althaus, J. S., Buxser, S. E., VonVoigtlander, P. F. and Ruppel, P. L. (1993). Competitive irreversible inhibition of dopamine uptake by 6-hydroxydopamine. Res. Commun. Chem. Pathol. Pharmacol. 79,195-208.
- Gong, X., Tang, X., Wiedmann, M., Wang, X., Peng, J., Zheng, D., Blair, L. A., Marshall, J. and Mao, Z. (2003). Cdk5- mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33-46. https://doi.org/10.1016/S0896-6273(03)00191-0
- Greggio, E. and Singleton, A. (2007). Kinase signaling pathways as potential targets in the treatment of Parkinson's disease. Expert Rev. Proteomics. 4, 783-792. https://doi.org/10.1586/14789450.4.6.783
- Heikkila, R. and Cohen, G. (1972). Inhibition of biogenic amine uptake by hydrogen peroxide: mechanism for toxic effects of 6-hydroxydopamine. Science 172, 1257-1258.
- Jenner, P. and Olanow, C. W. (1996). Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47, S161-170. https://doi.org/10.1212/WNL.47.6_Suppl_3.161S
- Jeon, J. I., Chang, C. S., Chen, Z. D. and Park, T. Y. (2007). Systematic aspects of foliar flavonoids in subsect. Carpinus (Carpinus, Betulaceae). Biochem. Syst. Ecol. 35, 606-613. https://doi.org/10.1016/j.bse.2007.04.004
- Jiang, Z. and Yu, P. H. (2005). Involvement of extracellular signal-regulated kinases 1/2 and (phosphoinositide 3-kinase)/ Akt signal pathways in acquired resistance against neurotoxin of 6-hydroxydopamine in SH-SY5Y cells following cellcell interaction with astrocytes. Neuroscience 133, 405-411. https://doi.org/10.1016/j.neuroscience.2005.02.028
- Kim, M. K., Kim, S. C., Kang, J. I., Hyun, J. H., Boo, H. J., Eun, S. Y., Park, D. B., Yoo, E. S., Kang, H. K. and Kang, J. H. 6-Hydroxydopamine-induced death of PC12 cells is mediated by MEF2D down-regulation. Neurochem. Res. In revision.
- Kulich, S. M., Horbinski, C., Patel, M. and Chu, C. T. (2007). 6-Hydroxydopamine induces mitochondrial ERK activation. Free Radic. Biol. Med. 43, 372-383. https://doi.org/10.1016/j.freeradbiomed.2007.04.028
- Kumar, R., Agarwal, M. L. and Seth, P. K. (1995). Free radicalgenerated neurotoxicity of 6-hydroxydopamine. J. Neurochem. 64, 1703-1707. https://doi.org/10.1046/j.1471-4159.1995.64041703.x
- Li, M., Linseman, D. A., Allen, M. P., Meintzer, M. K., Wang, X., Laessig, T., Wierman, M. E. and Heidenreich, K. A. (2001). Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J. Neurosci. 21, 6544-6552. https://doi.org/10.1523/JNEUROSCI.21-17-06544.2001
- Liu, L., Cavanaugh, J. E., Wang, Y., Sakagami, H., Mao, Z. and Xia, Z. (2003). ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc. Natl. Acad. Sci. USA. 100, 8532-8537. https://doi.org/10.1073/pnas.1332804100
- Lotharius, J., Dugan, L. L. and O’Malley, K. L. (1999). Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19, 1284-1293. https://doi.org/10.1523/JNEUROSCI.19-04-01284.1999
- Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. and Greenberg, M. E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785-790. https://doi.org/10.1126/science.286.5440.785
- Mao, Z. and Wiedmann, M. (1999). Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem. 274, 31102-31107. https://doi.org/10.1074/jbc.274.43.31102
- Mercer, L. D., Kelly, B. L., Horne, M. K., Beart, P. M. (2005). Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem. Pharmacol. 69, 339-345. https://doi.org/10.1016/j.bcp.2004.09.018
- Nie, G., Jin, C., Cao, Y., Shen, S. and Zhao, B. (2002). Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch. Biochem. Biophys. 397, 84-90. https://doi.org/10.1006/abbi.2001.2636
- Okamoto, S., Krainc, D. and Sherman, K. (2000). Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. USA. 97, 7561-7566 https://doi.org/10.1073/pnas.130502697
- Perumal, A. S., Tordzro, W. K., Katz, M., Jackson-Lewis, V., Cooper, T. B., Fahn, S. and Cadet, J. L. (1989). Regional effects of 6-hydroxydopamine on free radical scavengers in the rat brain. Brain Res. 504, 139-141. https://doi.org/10.1016/0006-8993(89)91611-9
- Przedborski, S. and Ischiropoulos, H. (2005). Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid. Redox Signal 7, 685-693. https://doi.org/10.1089/ars.2005.7.685
- Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W. and Zlabinger, G. J. (1992). A microplate assay for the detection of oxidative products using 2',7'- dichlorofluorescin-diacetate. J. Immunol. Methods. 25, 39-45.
- Saito, Y., Nishio, K., Ogawa, Y., Kinumi, T., Yoshida, Y., Masuo, Y. and Niki, E. (2007). Molecular mechanisms of 6-hydroxydopamine- induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic. Biol. Med. 42, 675-685. https://doi.org/10.1016/j.freeradbiomed.2006.12.004
- Sako, K., Fukuhara, S., Minami, T., Hamakubo, T., Song, H., Kodama, T., Fukamizu A., Gutkind, J. S., Koh, G. Y. and Mochizuki, N. (2009). Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/ AKT-dependent activation of myocyte enhancer factor 2. J. Biol. Chem. 284, 5592-5601. https://doi.org/10.1074/jbc.M806928200
- Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. and Boyd, M. R. (1988). Evaluation of a soluble tetrazolium/ formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833.
- Shim, J. S., Kim, H. G., Ju, M. S., Choi, J. G., Jeong, S. Y. and Oh, M. S. (2009). Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease. J. Ethnopharmacol. 126, 361-365. https://doi.org/10.1016/j.jep.2009.08.023
- Shimoke, K. and Chiba, H. (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson's disease. J. Neurosci. Res. 63, 402-409. https://doi.org/10.1002/1097-4547(20010301)63:5<402::AID-JNR1035>3.0.CO;2-F
- Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R. S., Anisman H., Vincent, I., Wang, X., Mao, Z. and Park, D. S. (2006). Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 11, 440-447.
- Subramaniam, S. and Unsicker, K. (2006). Extracellular signalregulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138, 1055-1065. https://doi.org/10.1016/j.neuroscience.2005.12.013
- Tang, X., Wang, X., Gong, X., Tong, M., Park, D., Xia, Z. and Mao, Z. (2005). Cyclin-dependent kinase 5 mediates neurotoxin- induced degradation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 25, 4823-4834. https://doi.org/10.1523/JNEUROSCI.1331-05.2005
- Veeranna, G. J., Shetty, K. T., Takahashi, M., Grant, P. and Pant, H. C. (2000). Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain. Mol. Brain Res. 76, 229-236. https://doi.org/10.1016/S0169-328X(00)00003-6
-
Zhang, R., Kang, K. A., Piao, M. J., Park, J. W., Shin, T., Yoo, B.
S., Yang, Y. T. and Hyun, J. W. (2007). Cytoprotective Activity
of Carpinus tschonoskii against
$H_2O_2$ Induced Oxidative Stress. Natural Product Sciences 13, 118-122.
Cited by
- Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells vol.152, pp.1, 2014, https://doi.org/10.1016/j.jep.2013.12.048
- Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells vol.142, pp.2, 2012, https://doi.org/10.1016/j.jep.2012.04.010
- Lonicera japonica THUNB. protects 6-hydroxydopamine-induced neurotoxicity by inhibiting activation of MAPKs, PI3K/Akt, and NF-κB in SH-SY5Y cells vol.50, pp.3-4, 2012, https://doi.org/10.1016/j.fct.2011.12.026
- Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells vol.74, 2014, https://doi.org/10.1016/j.neuint.2014.04.016
- RAW 264.7 세포에서 Carpinus pubescens Burkill 추출물의 항산화 및 항염증 활성 vol.44, pp.2, 2010, https://doi.org/10.4014/mbl.1509.09004
- Anti-acne vulgaris effect including skin barrier improvement and 5α-reductase inhibition by tellimagrandin I from Carpinus tschonoskii vol.19, pp.1, 2010, https://doi.org/10.1186/s12906-019-2734-y