DOI QR코드

DOI QR Code

Neuroprotective Effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-Induced Death of PC12 Cells

  • Kim, Min-Kyoung (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kim, Sang-Cheol (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kang, Jung-Il (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Boo, Hye-Jin (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Hyun, Jin-Won (Department of Biochemistry, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Koh, Young-Sang (Department of Microbiology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Park, Deok-Bae (Department of Histology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Yoo, Eun-Sook (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kang, Ji-Hoon (Department of Neurology, School of Medicine, Institute of Medical Sciences, Jeju National University) ;
  • Kang, Hee-Kyoung (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
  • Received : 2010.08.27
  • Accepted : 2010.10.14
  • Published : 2010.10.31

Abstract

The present study investigated the neuroprotective effect of Carpinus tschonoskii MAX and its intracellular protective mechanism on 6-hydroxydopamine (6-OHDA)-induced oxidative damage in PC12 cells. We found that pretreatment of PC12 cells with C. tschonoskii extract significantly inhibited the cell death induced by 6-OHDA in a dose dependent manner. C. tschonoskii extract decreased 6-OHDA-induced apoptotic events such as chromatin condensation, DNA fragmentation, the decrease of Bcl-2/Bax ratio, caspase-3 activation and PARP cleavage. C. tschonoskii extract also reduced generation of 6-OHDA-induced reactive oxygen species and nitric oxide. Furthermore, C. tschonoskii extract up-regulated the myocyte enhancer factor 2 D (MEF2D), a critical transcription factor for neuronal survival, and Akt activity, whereas it inhibited the activity of ERK1/2 and JNK. The results suggest that C. tschonoskii extract decreases 6-OHDA-induced oxidative stress and could prevent PC12 cell apoptosis induced by 6-OHDA via the up-regulation of MEF2D and Akt activity, and thus may have application in developing therapeutic agents for Parkinson's disease.

Keywords

References

  1. Abad, F., Maroto, R., Lopez, M. G., Sánchez-García, P. and García, A. G. (1995). Pharmacological protection against the cytotoxicity of 6-hydroxydopamine and $H_2O_2$ in chromaffin cells. Eur. J. Pharmacol. 293, 55-64. https://doi.org/10.1016/0926-6917(95)90018-7
  2. Black, B. L. and Olson, E. N. (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167-196. https://doi.org/10.1146/annurev.cellbio.14.1.167
  3. Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R. and Verna J. M. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Pro. Neurobiol. 65, 135-172. https://doi.org/10.1016/S0301-0082(01)00003-X
  4. Bournival, J., Quessy, P. and Martinoli, M. G. (2009). Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol. Neurobiol. 29, 1169-1180. https://doi.org/10.1007/s10571-009-9411-5
  5. Bove, J., Prou, D., Perier, C. and Przedborski, S. (2005). Toxininduced models of Parkinson's disease. NeuroRx. 2, 484-494. https://doi.org/10.1602/neurorx.2.3.484
  6. Brunet, A., Datta, S. R. and Greenberg, M. E. (2001). Transcriptiondependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297-305. https://doi.org/10.1016/S0959-4388(00)00211-7
  7. Chang, C. S. and Jeon, J. I. (2004). Foliar flavonoids of Carpinus, sect. Distegocarpus in eastern Asia. Biochem. Syst. Ecol. 32, 35-44. https://doi.org/10.1016/S0305-1978(03)00186-8
  8. Choi, W. S., Yoon, S. Y., Oh, T. H., Choi, E. J., O'Malley, K. L. and Oh, Y. J. (1999). Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic cell death: role of caspases, ROS and JNK. J. Neurosci. Res. 57, 86-94. https://doi.org/10.1002/(SICI)1097-4547(19990701)57:1<86::AID-JNR9>3.0.CO;2-E
  9. Chong, Z. Z., Li, F. and Maiese, K. (2005). Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol. Histopathol. 20, 299-315.
  10. Decker, D. E., Althaus, J. S., Buxser, S. E., VonVoigtlander, P. F. and Ruppel, P. L. (1993). Competitive irreversible inhibition of dopamine uptake by 6-hydroxydopamine. Res. Commun. Chem. Pathol. Pharmacol. 79,195-208.
  11. Gong, X., Tang, X., Wiedmann, M., Wang, X., Peng, J., Zheng, D., Blair, L. A., Marshall, J. and Mao, Z. (2003). Cdk5- mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33-46. https://doi.org/10.1016/S0896-6273(03)00191-0
  12. Greggio, E. and Singleton, A. (2007). Kinase signaling pathways as potential targets in the treatment of Parkinson's disease. Expert Rev. Proteomics. 4, 783-792. https://doi.org/10.1586/14789450.4.6.783
  13. Heikkila, R. and Cohen, G. (1972). Inhibition of biogenic amine uptake by hydrogen peroxide: mechanism for toxic effects of 6-hydroxydopamine. Science 172, 1257-1258.
  14. Jenner, P. and Olanow, C. W. (1996). Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47, S161-170. https://doi.org/10.1212/WNL.47.6_Suppl_3.161S
  15. Jeon, J. I., Chang, C. S., Chen, Z. D. and Park, T. Y. (2007). Systematic aspects of foliar flavonoids in subsect. Carpinus (Carpinus, Betulaceae). Biochem. Syst. Ecol. 35, 606-613. https://doi.org/10.1016/j.bse.2007.04.004
  16. Jiang, Z. and Yu, P. H. (2005). Involvement of extracellular signal-regulated kinases 1/2 and (phosphoinositide 3-kinase)/ Akt signal pathways in acquired resistance against neurotoxin of 6-hydroxydopamine in SH-SY5Y cells following cellcell interaction with astrocytes. Neuroscience 133, 405-411. https://doi.org/10.1016/j.neuroscience.2005.02.028
  17. Kim, M. K., Kim, S. C., Kang, J. I., Hyun, J. H., Boo, H. J., Eun, S. Y., Park, D. B., Yoo, E. S., Kang, H. K. and Kang, J. H. 6-Hydroxydopamine-induced death of PC12 cells is mediated by MEF2D down-regulation. Neurochem. Res. In revision.
  18. Kulich, S. M., Horbinski, C., Patel, M. and Chu, C. T. (2007). 6-Hydroxydopamine induces mitochondrial ERK activation. Free Radic. Biol. Med. 43, 372-383. https://doi.org/10.1016/j.freeradbiomed.2007.04.028
  19. Kumar, R., Agarwal, M. L. and Seth, P. K. (1995). Free radicalgenerated neurotoxicity of 6-hydroxydopamine. J. Neurochem. 64, 1703-1707. https://doi.org/10.1046/j.1471-4159.1995.64041703.x
  20. Li, M., Linseman, D. A., Allen, M. P., Meintzer, M. K., Wang, X., Laessig, T., Wierman, M. E. and Heidenreich, K. A. (2001). Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J. Neurosci. 21, 6544-6552. https://doi.org/10.1523/JNEUROSCI.21-17-06544.2001
  21. Liu, L., Cavanaugh, J. E., Wang, Y., Sakagami, H., Mao, Z. and Xia, Z. (2003). ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc. Natl. Acad. Sci. USA. 100, 8532-8537. https://doi.org/10.1073/pnas.1332804100
  22. Lotharius, J., Dugan, L. L. and O’Malley, K. L. (1999). Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19, 1284-1293. https://doi.org/10.1523/JNEUROSCI.19-04-01284.1999
  23. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. and Greenberg, M. E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785-790. https://doi.org/10.1126/science.286.5440.785
  24. Mao, Z. and Wiedmann, M. (1999). Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem. 274, 31102-31107. https://doi.org/10.1074/jbc.274.43.31102
  25. Mercer, L. D., Kelly, B. L., Horne, M. K., Beart, P. M. (2005). Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem. Pharmacol. 69, 339-345. https://doi.org/10.1016/j.bcp.2004.09.018
  26. Nie, G., Jin, C., Cao, Y., Shen, S. and Zhao, B. (2002). Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch. Biochem. Biophys. 397, 84-90. https://doi.org/10.1006/abbi.2001.2636
  27. Okamoto, S., Krainc, D. and Sherman, K. (2000). Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. USA. 97, 7561-7566 https://doi.org/10.1073/pnas.130502697
  28. Perumal, A. S., Tordzro, W. K., Katz, M., Jackson-Lewis, V., Cooper, T. B., Fahn, S. and Cadet, J. L. (1989). Regional effects of 6-hydroxydopamine on free radical scavengers in the rat brain. Brain Res. 504, 139-141. https://doi.org/10.1016/0006-8993(89)91611-9
  29. Przedborski, S. and Ischiropoulos, H. (2005). Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid. Redox Signal 7, 685-693. https://doi.org/10.1089/ars.2005.7.685
  30. Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W. and Zlabinger, G. J. (1992). A microplate assay for the detection of oxidative products using 2',7'- dichlorofluorescin-diacetate. J. Immunol. Methods. 25, 39-45.
  31. Saito, Y., Nishio, K., Ogawa, Y., Kinumi, T., Yoshida, Y., Masuo, Y. and Niki, E. (2007). Molecular mechanisms of 6-hydroxydopamine- induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic. Biol. Med. 42, 675-685. https://doi.org/10.1016/j.freeradbiomed.2006.12.004
  32. Sako, K., Fukuhara, S., Minami, T., Hamakubo, T., Song, H., Kodama, T., Fukamizu A., Gutkind, J. S., Koh, G. Y. and Mochizuki, N. (2009). Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/ AKT-dependent activation of myocyte enhancer factor 2. J. Biol. Chem. 284, 5592-5601. https://doi.org/10.1074/jbc.M806928200
  33. Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. and Boyd, M. R. (1988). Evaluation of a soluble tetrazolium/ formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833.
  34. Shim, J. S., Kim, H. G., Ju, M. S., Choi, J. G., Jeong, S. Y. and Oh, M. S. (2009). Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease. J. Ethnopharmacol. 126, 361-365. https://doi.org/10.1016/j.jep.2009.08.023
  35. Shimoke, K. and Chiba, H. (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson's disease. J. Neurosci. Res. 63, 402-409. https://doi.org/10.1002/1097-4547(20010301)63:5<402::AID-JNR1035>3.0.CO;2-F
  36. Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R. S., Anisman H., Vincent, I., Wang, X., Mao, Z. and Park, D. S. (2006). Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 11, 440-447.
  37. Subramaniam, S. and Unsicker, K. (2006). Extracellular signalregulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138, 1055-1065. https://doi.org/10.1016/j.neuroscience.2005.12.013
  38. Tang, X., Wang, X., Gong, X., Tong, M., Park, D., Xia, Z. and Mao, Z. (2005). Cyclin-dependent kinase 5 mediates neurotoxin- induced degradation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 25, 4823-4834. https://doi.org/10.1523/JNEUROSCI.1331-05.2005
  39. Veeranna, G. J., Shetty, K. T., Takahashi, M., Grant, P. and Pant, H. C. (2000). Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain. Mol. Brain Res. 76, 229-236. https://doi.org/10.1016/S0169-328X(00)00003-6
  40. Zhang, R., Kang, K. A., Piao, M. J., Park, J. W., Shin, T., Yoo, B. S., Yang, Y. T. and Hyun, J. W. (2007). Cytoprotective Activity of Carpinus tschonoskii against $H_2O_2$ Induced Oxidative Stress. Natural Product Sciences 13, 118-122.

Cited by

  1. Eucommia ulmoides Oliv. bark. attenuates 6-hydroxydopamine-induced neuronal cell death through inhibition of oxidative stress in SH-SY5Y cells vol.152, pp.1, 2014, https://doi.org/10.1016/j.jep.2013.12.048
  2. Eucommia ulmoides Oliv. Bark. protects against hydrogen peroxide-induced neuronal cell death in SH-SY5Y cells vol.142, pp.2, 2012, https://doi.org/10.1016/j.jep.2012.04.010
  3. Lonicera japonica THUNB. protects 6-hydroxydopamine-induced neurotoxicity by inhibiting activation of MAPKs, PI3K/Akt, and NF-κB in SH-SY5Y cells vol.50, pp.3-4, 2012, https://doi.org/10.1016/j.fct.2011.12.026
  4. Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells vol.74, 2014, https://doi.org/10.1016/j.neuint.2014.04.016
  5. RAW 264.7 세포에서 Carpinus pubescens Burkill 추출물의 항산화 및 항염증 활성 vol.44, pp.2, 2010, https://doi.org/10.4014/mbl.1509.09004
  6. Anti-acne vulgaris effect including skin barrier improvement and 5α-reductase inhibition by tellimagrandin I from Carpinus tschonoskii vol.19, pp.1, 2010, https://doi.org/10.1186/s12906-019-2734-y