DOI QR코드

DOI QR Code

Therapeutic Application of Nitric Oxide in Human Diseases

  • NamKoong, Seung (Medical & Bio-Material Research Center and Department of Physical Therapy, College of Health and Welfare, Kangwon National University) ;
  • Kim, Young-Myeong (Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University)
  • Received : 2010.09.10
  • Accepted : 2010.10.05
  • Published : 2010.10.31

Abstract

Nitric oxide (NO), synthesized from L-arginine by three isoforms of NO synthase (NOS), is a gaseous signaling molecule with an astonishingly wide range of biological and pathophysiological activities, including vasorelaxation, angiogenesis, anti-inflammation, and anti-apoptosis in mammalian cells. Recent studies have shown that NO donors and inhaled NO convert to biologically active NO under biological conditions and act as a signaling molecule in pathophysiological conditions. This review will discuss the roles of NO and its potential therapeutic implication in various human diseases, such as tumor, vascular regeneration, hypertension, wound healing, and ischemia-reperfusion injury.

Keywords

References

  1. Ahem, G. P., Klyachko, V. A. and Jackson, M. B. (2002). cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci. 25, 510-517. https://doi.org/10.1016/S0166-2236(02)02254-3
  2. Ahn, B. and Ohshima, H. (2001). Suppression of intestinal polyposis in Apc (Min/+) mice by inhibiting nitric oxide production. Cancer Res. 61, 8357-8360.
  3. Andrade, S. P., Hart, I. R. and Piper, P. J. (1992). Inhibitors of nitric oxide synthase selectively reduce flow in tumorassociated neovasculature. Br. J. Pharmacol. 107, 1092-1095. https://doi.org/10.1111/j.1476-5381.1992.tb13412.x
  4. Archer, S. L., Huang, J. M., Hampl, V., Nelson, D. P., Shultz, P.J. and Weir, E. K. (1994). Nitric oxide and cGMP causevasorelaxation by activation of a charybdotoxin-sensitive Kchannel by cGMP-dependent protein kinase. Proc. Natl.Acad. Sci. USA. 91, 7583-7587. https://doi.org/10.1073/pnas.91.16.7583
  5. Beghetti, M., Habre, W., Friedli, B. and Berner, M. (1995).Continuous low dose inhaled nitric oxide for treatment ofsevere pulmonary hypertension after cardiac surgery inpaediatric patients. Br. Heart J. 73, 65-68. https://doi.org/10.1136/hrt.73.1.65
  6. Bell, R. M., Maddock, H. L. and Yellon, D. M. (2003). The cardioprotectiveand mitochondrial depolarising properties ofexogenous nitric oxide in mouse heart. Cardiovasc. Res. 57,405-415. https://doi.org/10.1016/S0008-6363(02)00675-2
  7. Brune, B., von Knethen, A. and Sandau, K. B. (1998). Nitricoxide and its role in apoptosis. Eur. J. Pharmacol. 351,261-272. https://doi.org/10.1016/S0014-2999(98)00274-X
  8. Brune, B. and Zhou, J. (2007). Nitric oxide and superoxide:interference with hypoxic signaling. Cardiovasc. Res. 75,275-282. https://doi.org/10.1016/j.cardiores.2007.03.005
  9. Chazotte-Aubert, L., Hainaut, P. and Ohshima, H. (2000). Nitricoxide nitrates tyrosine residues of tumor-suppressor p53protein in MCF-7 cells. Biochem. Biophys. Res. Commun.267, 609-613. https://doi.org/10.1006/bbrc.1999.2003
  10. Chinje, E. C. and Stratford, I. J. (1997). Role of nitric oxide ingrowth of solid tumours: a balancing act. Essays Biochem.32, 61-72.
  11. Chung, B. H., Kim, J. D., Kim, C. K., Kim, J. H., Won, M. H., Lee,H. S., Dong, M. S., Ha, K. S., Kwon, Y. G. and Kim, Y. M.(2008). Icariin stimulates angiogenesis by activating theMEK/ERK- and PI3K/Akt/eNOS-dependent signal pathwaysin human endothelial cells. Biochem. Biophys. Res.Commun. 376, 404-408. https://doi.org/10.1016/j.bbrc.2008.09.001
  12. Chung, B. H., Lee, J. J., Kim, J. D., Jeoung, D., Lee, H., Choe,J., Ha, K. S., Kwon, Y. G. and Kim, Y. M. (2010). Angiogenicactivity of sesamin through the activation of multiple signalpathways. Biochem. Biophys. Res. Commun. 391, 254-260. https://doi.org/10.1016/j.bbrc.2009.11.045
  13. Chung, H. T., Pae, H. O., Choi, B. M., Billiar, T. R. and Kim, Y.M. (2001). Nitric oxide as a bioregulator of apoptosis.Biochem. Biophys. Res. Commun. 282, 1075-1079. https://doi.org/10.1006/bbrc.2001.4670
  14. Cosby, K., Partovi, K. S., Crawford, J. H., Patel, R. P., Reiter, C.D., Martyr, S., Yang, B. K., Waclawiw, M. A., Zalos, G., Xu,X., Huang, K. T., Shields, H., Kim-Shapiro, D. B., Schechter,A. N., Cannon, R. O. 3rd and Gladwin, M. T. (2003). Nitritereduction to nitric oxide by deoxyhemoglobin vasodilates thehuman circulation. Nat. Med. 9, 1498-1505. https://doi.org/10.1038/nm954
  15. Dash, P. R., Cartwright, J. E., Baker, P. N., Johnstone, A. P. andWhitley, G. S. (2003). Nitric oxide protects humanextravillous trophoblast cells from apoptosis by a cyclicGMP-dependent mechanism and independently of caspase3 nitrosylation. Exp. Cell. Res. 287, 314-324. https://doi.org/10.1016/S0014-4827(03)00156-3
  16. Date, H., Triantafillou, A. N., Trulock, E. P., Pohl, M. S., Cooper,J. D. and Patterson, G. A. (1996). Inhaled nitric oxidereduces human lung allograft dysfunction. J. Thorac.Cardiovasc. Surg. 111, 913-919. https://doi.org/10.1016/S0022-5223(96)70364-1
  17. deRojas-Walker, T., Tamir, S., Ji, H., Wishnok, J. S. and Tannenbaum, S. R. (1995). Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem. Res. Toxicol. 8, 473-477. https://doi.org/10.1021/tx00045a020
  18. Dezfulian, C., Raat, N., Shiva, S. and Gladwin, M. T. (2007).Role of the anion nitrite in ischemia-reperfusion cytoprotectionand therapeutics. Cardiovasc. Res. 75, 327-338. https://doi.org/10.1016/j.cardiores.2007.05.001
  19. Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse,R. and Zeiher, A. M. (1999). Activation of nitric oxidesynthase in endothelial cells by Akt-dependent phosphorylation.Nature 399, 601-605. https://doi.org/10.1038/21224
  20. Dulak, J., Jozkowicz, A., Dembinska-Kiec, A., Guevara, I.,Zdzienicka, A., Zmudzinska-Grochot, D., Florek, I., Wojtowicz,A., Szuba, A. and Cooke, J. P. (2000). Nitric oxideinduces the synthesis of vascular endothelial growth factorby rat vascular smooth muscle cells. Arterioscler. Thromb.Vasc. Biol. 20, 659-666. https://doi.org/10.1161/01.ATV.20.3.659
  21. Duranski, M. R., Greer, J. J., Dejam, A., Jaganmohan, S., Hogg,N., Langston, W., Patel, R. P., Yet, S. F., Wang, X., Kevil, C.G., Gladwin, M. T. and Lefer, D. J. (2005). Cytoprotectiveeffects of nitrite during in vivo ischemia-reperfusion of theheart and liver. J. Clin. Invest. 115, 1232-1240. https://doi.org/10.1172/JCI22493
  22. Edwards, C., Feng, H. Q., Reynolds, C., Mao, L. and Rockey, D.C. (2008). Effect of the nitric oxide donor V-PYRRO/NO onportal pressure and sinusoidal dynamics in normal andcirrhotic mice. Am. J. Physiol. Gastrointest. Liver Physiol.294, G1311-1317. https://doi.org/10.1152/ajpgi.00368.2007
  23. Elfering, S. L., Sarkela, T. M. and Giulivi, C. (2002). Biochemistryof mitochondrial nitric-oxide synthase. J. Biol. Chem. 277,38079-38086. https://doi.org/10.1074/jbc.M205256200
  24. Elrod, J. W., Greer, J. J., Bryan, N. S., Langston, W., Szot, J. F.,Gebregzlabher, H., Janssens, S., Feelisch, M. and Lefer, D.J. (2006). Cardiomyocyte-specific overexpression of NOsynthase-3 protects against myocardial ischemia-reperfusioninjury. Arterioscler. Thromb. Vasc. Biol. 26, 1517-1523. https://doi.org/10.1161/01.ATV.0000224324.52466.e6
  25. Fleming, I., Fisslthaler, B., Dimmeler, S., Kemp, B. E. andBusse, R. (2001). Phosphorylation of Thr(495) regulatesCa(2+)/calmodulin-dependent endothelial nitric oxide synthaseactivity. Circ. Res. 88, E68-75. https://doi.org/10.1161/hh1101.092677
  26. Folkman, J. and Shing, Y. (1992). Angiogenesis. J. Biol. Chem.267, 10931-10934.
  27. Forrester, K., Ambs, S., Lupold, S. E., Kapust, R. B., Spillare, E.A., Weinberg, W. C., Felley-Bosco, E., Wang, X. W., Geller,D. A., Tzeng, E., Billiar, T. R. and Harris, C. C. (1996). Nitricoxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc. Natl.Acad. Sci. USA. 93, 2442-2447. https://doi.org/10.1073/pnas.93.6.2442
  28. Forstermann, U., Kleinert, H., Gath, I., Schwarz, P., Closs, E. I.and Dun, N. J. (1995). Expression and expressional controlof nitric oxide synthases in various cell types. Adv.Pharmacol. 34, 171-186. https://doi.org/10.1016/S1054-3589(08)61085-6
  29. Foster, M. W., Hess, D. T. and Stamler, J. S. (2009). ProteinS-nitrosylation in health and disease: a current perspective.Trends Mol. Med. 15, 391-404. https://doi.org/10.1016/j.molmed.2009.06.007
  30. Fukumura, D., Gohongi, T., Kadambi, A., Izumi, Y., Ang, J.,Yun, C. O., Buerk, D. G., Huang, P. L. and Jain, R. K. (2001).Predominant role of endothelial nitric oxide synthase invascular endothelial growth factor-induced angiogenesisand vascular permeability. Proc. Natl. Acad. Sci. USA. 98,2604-2609. https://doi.org/10.1073/pnas.041359198
  31. Furchgott, R. F. and Zawadzki, J. V. (1980). The obligatory roleof endothelial cells in the relaxation of arterial smooth muscleby acetylcholine. Nature 288, 373-376. https://doi.org/10.1038/288373a0
  32. Garg, U. C. and Hassid, A. (1989). Nitric oxide-generating vasodilatorsand 8-bromo-cyclic guanosine monophosphateinhibit mitogenesis and proliferation of cultured rat vascularsmooth muscle cells. J. Clin. Invest. 83, 1774-1777. https://doi.org/10.1172/JCI114081
  33. Gath, I., Closs, E. I., Godtel-Armbrust, U., Schmitt, S., Nakane,M., Wessler, I. and Forstermann, U. (1996). Inducible NOsynthase II and neuronal NO synthase I are constitutivelyexpressed in different structures of guinea pig skeletalmuscle: implications for contractile function. FASEB J. 10,1614-1620. https://doi.org/10.1096/fasebj.10.14.9002553
  34. Ghofrani, H. A., Hoeper, M. M., Halank, M., Meyer, F. J.,Staehler, G., Behr, J., Ewert, R., Weimann, G. andGrimminger, F. (2010). Riociguat for chronic thromboembolicpulmonary hypertension and pulmonary arterialhypertension: a phase II study. Eur. Respir. J. 36, 792-799. https://doi.org/10.1183/09031936.00182909
  35. Granger, D. L., Taintor, R. R., Cook, J. L. and Hibbs, J. B. Jr.(1980). Injury of neoplastic cells by murine macrophagesleads to inhibition of mitochondrial respiration. J. Clin. Invest.65, 357-370. https://doi.org/10.1172/JCI109679
  36. Ha, K. S., Kim, K. M., Kwon, Y. G., Bai, S. K., Nam, W. D., Yoo,Y. M., Kim, P. K., Chung, H. T., Billiar, T. R. and Kim, Y. M.(2003). Nitric oxide prevents 6-hydroxydopamine-inducedapoptosis in PC12 cells through cGMP-dependent PI3kinase/Akt activation. FASEB J. 17, 1036-1047. https://doi.org/10.1096/fj.02-0738com
  37. Hibbs, J. B. Jr., Taintor, R. R. and Vavrin, Z. (1987). Macrophagecytotoxicity: role for L-arginine deiminase and iminonitrogen oxidation to nitrite. Science 235, 473-476. https://doi.org/10.1126/science.2432665
  38. Hibbs, J. B. Jr., Taintor, R. R., Vavrin, Z. and Rachlin, E. M. (1988).Nitric oxide: a cytotoxic activated macrophage effectormolecule. Biochem. Biophys. Res. Commun. 157, 87-94. https://doi.org/10.1016/S0006-291X(88)80015-9
  39. Huang, L. E., Willmore, W. G., Gu, J., Goldberg, M. A. and Bunn, H. F. (1999). Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J. Biol. Chem. 274, 9038- 9044. https://doi.org/10.1074/jbc.274.13.9038
  40. Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz,M. A., Bevan, J. A. and Fishman, M. C. (1995). Hypertensionin mice lacking the gene for endothelial nitric oxide synthase.Nature 377, 239-242. https://doi.org/10.1038/377239a0
  41. Huang, Z., Shiva, S., Kim-Shapiro, D. B., Patel, R. P., Ringwood,L. A., Irby, C. E., Huang, K. T., Ho, C., Hogg, N., Schechter,A. N. and Gladwin, M. T. (2005). Enzymatic function ofhemoglobin as a nitrite reductase that produces NO underallosteric control. J. Clin. Invest. 115, 2099-2107. https://doi.org/10.1172/JCI24650
  42. Hunter, C. J., Dejam, A., Blood, A. B., Shields, H., Kim-Shapiro,D. B., Machado, R. F., Tarekegn, S., Mulla, N., Hopper, A.O., Schechter, A. N., Power, G. G. and Gladwin, M. T. (2004).Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependentselective pulmonary vasodilator. Nat. Med. 10, 1122-1127. https://doi.org/10.1038/nm1109
  43. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. andChaudhuri, G. (1987). Endothelium-derived relaxing factorproduced and released from artery and vein is nitric oxide.Proc. Natl. Acad. Sci. USA. 84, 9265-9269. https://doi.org/10.1073/pnas.84.24.9265
  44. Johnson, T. A., Stasko, N. A., Matthews, J. L., Cascio, W. E.,Holmuhamedov, E. L., Johnson, C. B. and Schoenfisch, M.H. (2010). Reduced ischemia/reperfusion injury via glutathioneinitiatednitric oxide-releasing dendrimers. Nitric Oxide 22,30-36. https://doi.org/10.1016/j.niox.2009.11.002
  45. Jones, S. P., Greer, J. J., Kakkar, A. K., Ware, P. D., Turnage,R. H., Hicks, M., van Haperen, R., de Crom, R., Kawashima,S., Yokoyama, M. and Lefer, D. J. (2004). Endothelial nitricoxide synthase overexpression attenuates myocardialreperfusion injury. Am. J. Physiol. Heart. Circ. Physiol. 286,H276-282. https://doi.org/10.1152/ajpheart.00129.2003
  46. Jun, C. D., Choi, B. M., Hoon, R., Um, J. Y., Kwak, H. J., Lee, B.S., Paik, S. G., Kim, H. M. and Chung, H. T. (1994).Synergistic cooperation between phorbol ester and IFN-$\gamma$ forinduction of nitric oxide synthesis in murine peritonealmacrophages. J. Immunol. 153, 3684-3690.
  47. Jung, K. H., Chu, K., Ko, S. Y., Lee, S. T., Sinn, D. I., Park, D.K., Kim, J. M., Song, E. C., Kim, M. and Roh, J. K. (2006).Early intravenous infusion of sodium nitrite protects brainagainst in vivo ischemia-reperfusion injury. Stroke 37,2744-2750. https://doi.org/10.1161/01.STR.0000245116.40163.1c
  48. Kanno, S., Lee, P. C., Zhang, Y., Ho, C., Griffith, B. P., Shears,L. L. 2nd and Billiar, T. R. (2000). Attenuation of myocardialischemia/reperfusion injury by superinduction of induciblenitric oxide synthase. Circulation 101, 2742-2748. https://doi.org/10.1161/01.CIR.101.23.2742
  49. Kim, Y. M., Bergonia, H. and Lancaster, J. R. Jr. (1995a). Nitrogenoxide-induced autoprotection in isolated rat hepatocytes.FEBS Lett. 374, 228-232. https://doi.org/10.1016/0014-5793(95)01115-U
  50. Kim, Y. M., Bergonia, H. A., Muller, C., Pitt, B. R., Watkins, W.D. and Lancaster, J. R. Jr. (1995b). Loss and degradation ofenzyme-bound heme induced by cellular nitric oxidesynthesis. J. Biol. Chem. 270, 5710-5713. https://doi.org/10.1074/jbc.270.11.5710
  51. Kim, Y. M., Chung, H. T., Kim, S. S., Han, J. A., Yoo, Y. M., Kim,K. M., Lee, G. H., Yun, H. Y., Green, A., Li, J., Simmons, R.L. and Billiar, T. R. (1999). Nitric oxide protects PC12 cellsfrom serum deprivation-induced apoptosis by cGMP-dependentinhibition of caspase signaling. J. Neurosci. 19,6740-6747. https://doi.org/10.1523/JNEUROSCI.19-16-06740.1999
  52. Kim, Y. M., Chung, H. T., Simmons, R. L. and Billiar, T. R.(2000). Cellular non-heme iron content is a determinant ofnitric oxide-mediated apoptosis, necrosis, and caspaseinhibition. J. Biol. Chem. 275, 10954-10961. https://doi.org/10.1074/jbc.275.15.10954
  53. Kim, Y. M., de Vera, M. E., Watkins, S. C. and Billiar, T. R.(1997a). Nitric oxide protects cultured rat hepatocytes fromtumor necrosis factor-alpha-induced apoptosis by inducingheat shock protein 70 expression. J. Biol. Chem. 272,1402-1411. https://doi.org/10.1074/jbc.272.2.1402
  54. Kim, Y. M., Talanian, R. V. and Billiar, T. R. (1997b). Nitric oxideinhibits apoptosis by preventing increases in caspase-3-likeactivity via two distinct mechanisms. J. Biol. Chem. 272, 31138-31148. https://doi.org/10.1074/jbc.272.49.31138
  55. Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T.,D'Acquisto, F., Addeo, R., Makuuchi, M. and Esumi, H.(2000). Hypoxia response element of the human vascularendothelial growth factor gene mediates transcriptionalregulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95, 189-197.
  56. Kisley, L. R., Barrett, B. S., Bauer, A. K., Dwyer-Nield, L. D.,Barthel, B., Meyer, A. M., Thompson, D. C. and Malkinson,A. M. (2002). Genetic ablation of inducible nitric oxidesynthase decreases mouse lung tumorigenesis. CancerRes. 62, 6850-6856.
  57. Kiziltepe, T., Hideshima, T., Ishitsuka, K., Ocio, E. M., Raje, N.,Catley, L., Li, C. Q., Trudel, L. J., Yasui, H., Vallet, S., Kutok,J. L., Chauhan, D., Mitsiades, C. S., Saavedra, J. E., Wogan,G. N., Keefer, L. K., Shami, P. J. and Anderson, K. C. (2007).JS-K, a GST-activated nitric oxide generator, induces DNAdouble-strand breaks, activates DNA damage responsepathways, and induces apoptosis in vitro and in vivo inhuman multiple myeloma cells. Blood 110, 709-718. https://doi.org/10.1182/blood-2006-10-052845
  58. Konopka, T. E., Barker, J. E., Bamford, T. L., Guida, E., Anderson,R. L. and Stewart, A. G. (2001). Nitric oxide synthase IIgene disruption: implications for tumor growth and vascularendothelial growth factor production. Cancer Res. 61,3182-3187.
  59. Kroncke, K. D. (2003). Nitrosative stress and transcription. Biol.Chem. 384, 1365-1377. https://doi.org/10.1515/BC.2003.153
  60. Kroncke, K. D., Fehsel, K. and Kolb-Bachofen, V. (1997). Nitricoxide: cytotoxicity versus cytoprotection--how, why, when,and where? Nitric Oxide. 1, 107-120. https://doi.org/10.1006/niox.1997.0118
  61. Kumar, D., Branch, B. G., Pattillo, C. B., Hood, J., Thoma, S.,Simpson, S., Illum, S., Arora, N., Chidlow, J. H., Jr., Langston,W., Teng, X., Lefer, D. J., Patel, R. P. and Kevil, C. G.(2008). Chronic sodium nitrite therapy augments ischemiainducedangiogenesis and arteriogenesis. Proc. Natl. Acad.Sci. USA. 105, 7540-7545. https://doi.org/10.1073/pnas.0711480105
  62. Kuroki, I., Miyazaki, T., Mizukami, I., Matsumoto, N. andMatsumoto, I. (2004). Effect of sodium nitroprusside onischemia-reperfusion injuries of the rat liver. Hepatogastroenterology51, 1404-1407.
  63. Lala, P. K. and Chakraborty, C. (2001). Role of nitric oxide incarcinogenesis and tumour progression. Lancet Oncol. 2,149-156. https://doi.org/10.1016/S1470-2045(00)00256-4
  64. Lang, J. D. Jr., Teng, X., Chumley, P., Crawford, J. H., Isbell, T.S., Chacko, B. K., Liu, Y., Jhala, N., Crowe, D. R., Smith, A.B., Cross, R. C., Frenette, L., Kelley, E. E., Wilhite, D. W.,Hall, C. R., Page, G. P., Fallon, M. B., Bynon, J. S., Eckhoff,D. E. and Patel, R. P. (2007). Inhaled NO accelerates restorationof liver function in adults following orthotopic livertransplantation. J. Clin. Invest. 117, 2583-2591. https://doi.org/10.1172/JCI31892
  65. Le, X., Wei, D., Huang, S., Lancaster, J. R. Jr. and Xie, K.(2005). Nitric oxide synthase II suppresses the growth andmetastasis of human cancer regardless of its up-regulationof protumor factors. Proc. Natl. Acad. Sci. USA. 102, 8758-8763. https://doi.org/10.1073/pnas.0409581102
  66. Lee, P. C., Salyapongse, A. N., Bragdon, G. A., Shears, L. L.2nd, Watkins, S. C., Edington, H. D. and Billiar, T. R. (1999).Impaired wound healing and angiogenesis in eNOS-deficientmice. Am. J. Physiol. 277, H1600-1608.
  67. Li, J., Billiar, T. R., Talanian, R. V. and Kim, Y. M. (1997). Nitricoxide reversibly inhibits seven members of the caspasefamily via S-nitrosylation. Biochem. Biophys. Res. Commun.240, 419-424. https://doi.org/10.1006/bbrc.1997.7672
  68. Li, Q., Guo, Y., Xuan, Y. T., Lowenstein, C. J., Stevenson, S. C.,Prabhu, S. D., Wu, W. J., Zhu, Y. and Bolli, R. (2003). Genetherapy with inducible nitric oxide synthase protects againstmyocardial infarction via a cyclooxygenase-2-dependentmechanism. Circ. Res. 92, 741-748. https://doi.org/10.1161/01.RES.0000065441.72685.29
  69. Lima, B., Forrester, M. T., Hess, D. T. and Stamler, J. S. (2010).S-nitrosylation in cardiovascular signaling. Circ. Res. 106,633-646. https://doi.org/10.1161/CIRCRESAHA.109.207381
  70. Lowson, S. M. (2004). Alternatives to nitric oxide. Br. Med. Bull.70, 119-131. https://doi.org/10.1093/bmb/ldh028
  71. Marletta, M. A., Hurshman, A. R. and Rusche, K. M. (1998).Catalysis by nitric oxide synthase. Curr. Opin. Chem. Biol. 2,656-663. https://doi.org/10.1016/S1367-5931(98)80098-7
  72. Matthews, N. E., Adams, M. A., Maxwell, L. R., Gofton, T. E.and Graham, C. H. (2001). Nitric oxide-mediated regulationof chemosensitivity in cancer cells. J. Natl. Cancer Inst. 93,1879-1885. https://doi.org/10.1093/jnci/93.24.1879
  73. Messmer, U. K. and Brune, B. (1996). Nitric oxide-inducedapoptosis: p53-dependent and p53-independent signallingpathways. Biochem. J. 319, 299-305. https://doi.org/10.1042/bj3190299
  74. Miller, M. R. and Megson, I. L. (2007). Recent developments innitric oxide donor drugs. Br. J. Pharmacol. 151, 305-321. https://doi.org/10.1038/sj.bjp.0707224
  75. Moncada, S., Palmer, R. M. and Higgs, E. A. (1991). Nitricoxide: physiology, pathophysiology, and pharmacology. Pharmacol.Rev. 43, 109-142.
  76. Murad, F. (1986). Cyclic guanosine monophosphate as amediator of vasodilation. J. Clin. Invest. 78, 1-5. https://doi.org/10.1172/JCI112536
  77. Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H.,Kalka, C., Kearney, M., Chen, D., Symes, J. F., Fishman, M.C., Huang, P. L. and Isner, J. M. (1998). Nitric oxidesynthase modulates angiogenesis in response to tissueischemia. J. Clin. Invest. 101, 2567-2578. https://doi.org/10.1172/JCI1560
  78. Namkoong, S., Chung, B. H., Ha, K. S., Lee, H., Kwon, Y. G.and Kim, Y. M. (2008). Microscopic technique for the detectionof nitric oxide-dependent angiogenesis in an animalmodel. Methods Enzymol. 441, 393-402. https://doi.org/10.1016/S0076-6879(08)01222-6
  79. Nathan, C. (1992). Nitric oxide as a secretory product ofmammalian cells. FASEB J. 6, 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  80. Nathan, C. (1997). Inducible nitric oxide synthase: what differencedoes it make? J. Clin. Invest. 100, 2417-2423. https://doi.org/10.1172/JCI119782
  81. Nathan, C. and Xie, Q. W. (1994). Regulation of biosynthesis ofnitric oxide. J. Biol. Chem. 269, 13725-13728.
  82. Papapetropoulos, A., Garcia-Cardena, G., Madri, J. A. andSessa, W. C. (1997). Nitric oxide production contributes to theangiogenic properties of vascular endothelial growth factor inhuman endothelial cells. J. Clin. Invest. 100, 3131- 139. https://doi.org/10.1172/JCI119868
  83. Radomski, M. W., Jenkins, D. C., Holmes, L. and Moncada, S.(1991). Human colorectal adenocarcinoma cells: differentialnitric oxide synthesis determines their ability to aggregateplatelets. Cancer Res. 51, 6073-6078.
  84. RayChaudhury, A., Frischer, H. and Malik, A. B. (1996). Inhibitionof endothelial cell proliferation and bFGF-inducedphenotypic modulation by nitric oxide. J. Cell. Biochem. 63,125-134. https://doi.org/10.1002/(SICI)1097-4644(19961101)63:2<125::AID-JCB1>3.0.CO;2-#
  85. Sase, K. and Michel, T. (1997). Expression and regulation ofendothelial nitric oxide synthase. Trends in Cardiovasc.Med. 7, 28-37. https://doi.org/10.1016/S1050-1738(96)00121-1
  86. Scatena, R., Bottoni, P., Martorana, G. E. and Giardina, B.(2005). Nitric oxide donor drugs: an update on pathophysiologyand therapeutic potential. Expert Opin. Investig.Drugs 14, 835-846. https://doi.org/10.1517/13543784.14.7.835
  87. Schgoer, W., Theurl, M., Jeschke, J., Beer, A. G., Albrecht, K.,Gander, R., Rong, S., Vasiljevic, D., Egger, M., Wolf, A. M.,Frauscher, S., Koller, B., Tancevski, I., Patsch, J. R., Schratzberger,P., Piza-Katzer, H., Ritsch, A., Bahlmann, F. H.,Fischer-Colbrie, R., Wolf, D. and Kirchmair, R. (2009). Genetherapy with the angiogenic cytokine secretoneurin inducestherapeutic angiogenesis by a nitric oxide-dependent mechanism.Circ. Res. 105, 994-1002. https://doi.org/10.1161/CIRCRESAHA.109.199513
  88. Schmidt, H. H., Lohmann, S. M. and Walter, U. (1993). Thenitric oxide and cGMP signal transduction system: regulationand mechanism of action. Biochim. Biophys. Acta. 1178,153-175. https://doi.org/10.1016/0167-4889(93)90006-B
  89. Schulz, R., Kelm, M. and Heusch, G. (2004). Nitric oxide inmyocardial ischemia/reperfusion injury. Cardiovasc. Res.61, 402-413. https://doi.org/10.1016/j.cardiores.2003.09.019
  90. Schwentker, A. and Billiar, T. R. (2002). Inducible nitric oxidesynthase: from cloning to therapeutic applications. World J.Surg. 26, 772-778. https://doi.org/10.1007/s00268-002-4051-7
  91. Shimaoka, M., Iida, T., Ohara, A., Taenaka, N., Mashimo, T.,Honda, T. and Yoshiya, I. (1995). NOC, a nitric-oxidereleasingcompound, induces dose dependent apoptosis inmacrophages. Biochem. Biophys. Res. Commun. 209,519-526. https://doi.org/10.1006/bbrc.1995.1532
  92. Silvagno, F., Xia, H. and Bredt, D. S. (1996). Neuronal nitric- oxidesynthase-mu, an alternatively spliced isoform expressed indifferentiated skeletal muscle. J. Biol. Chem. 271, 11204-11208. https://doi.org/10.1074/jbc.271.19.11204
  93. Simeone, A. M., Colella, S., Krahe, R., Johnson, M. M., Mora, E.and Tari, A. M. (2006). N-(4-Hydroxyphenyl)retinamide andnitric oxide pro-drugs exhibit apoptotic and anti-invasiveeffects against bone metastatic breast cancer cells.Carcinogenesis 27, 568-577. https://doi.org/10.1093/carcin/bgi233
  94. Sogawa, K., Numayama-Tsuruta, K., Ema, M., Abe, M., Abe, H.and Fujii-Kuriyama, Y. (1998). Inhibition of hypoxia-induciblefactor 1 activity by nitric oxide donors in hypoxia. Proc. Natl.Acad. Sci. USA. 95, 7368-7373. https://doi.org/10.1073/pnas.95.13.7368
  95. Spedding, M., Schini, V., Schoeffter, P. and Miller, R. C. (1986).Calcium channel activation does not increase release ofendothelial-derived relaxant factors (EDRF) in rat aortaalthough tonic release of EDRF may modulate calciumchannel activity in smooth muscle. J. Cardiovasc. Pharmacol.8, 1130-1137. https://doi.org/10.1097/00005344-198611000-00006
  96. Stasch, J. P. and Hobbs, A. J. (2009). NO-independent, haemdependentsoluble guanylate cyclase stimulators. Handb.Exp. Pharmacol. 277-308.
  97. Steudel, W., Hurford, W. E. and Zapol, W. M. (1999). Inhalednitric oxide: basic biology and clinical applications. Anesthesiology91, 1090-1121. https://doi.org/10.1097/00000542-199910000-00030
  98. Stuehr, D. J. and Marletta, M. A. (1985). Mammalian nitratebiosynthesis: mouse macrophages produce nitrite andnitrate in response to Escherichia coli lipopolysaccharide.Proc. Natl. Acad. Sci. USA. 82, 7738-7742. https://doi.org/10.1073/pnas.82.22.7738
  99. Surks, H. K. (2007). cGMP-dependent protein kinase I andsmooth muscle relaxation: a tale of two isoforms. Circ. Res.101, 1078-1080. https://doi.org/10.1161/CIRCRESAHA.107.165779
  100. Tatoyan, A. and Giulivi, C. (1998). Purification and characterizationof a nitric-oxide synthase from rat liver mitochondria.J. Biol. Chem. 273, 11044-11048. https://doi.org/10.1074/jbc.273.18.11044
  101. Taylor, C. T. and Moncada, S. (2010). Nitric oxide, cytochromeC oxidase, and the cellular response to hypoxia. Arterioscler.Thromb. Vasc. Biol. 30, 643-647. https://doi.org/10.1161/ATVBAHA.108.181628
  102. Thatcher, G. R. (2005). An introduction to NO-related therapeuticagents. Curr. Top. Med. Chem. 5, 597-601. https://doi.org/10.2174/1568026054679281
  103. Thebaud, B., Arnal, J. F., Mercier, J. C. and Dinh-Xuan, A. T.(1999). Inhaled and exhaled nitric oxide. Cell Mol. Life Sci.55, 1103-1112. https://doi.org/10.1007/s000180050360
  104. Trikha, P., Sharma, N. and Athar, M. (2001). Nitroglycerin: a NOdonor inhibits TPA-mediated tumor promotion in murine skin.Carcinogenesis 22, 1207-1211. https://doi.org/10.1093/carcin/22.8.1207
  105. Tripatara, P., Patel, N. S., Webb, A., Rathod, K., Lecomte, F.M., Mazzon, E., Cuzzocrea, S., Yaqoob, M. M., Ahluwalia, A.and Thiemermann, C. (2007). Nitrite-derived nitric oxideprotects the rat kidney against ischemia/reperfusion injury invivo: role for xanthine oxidoreductase. J. Am. Soc. Nephrol.18, 570-580. https://doi.org/10.1681/ASN.2006050450
  106. Tsuchiya, K., Kanematsu, Y., Yoshizumi, M., Ohnishi, H., Kirima,K., Izawa, Y., Shikishima, M., Ishida, T., Kondo, S., Kagami,S., Takiguchi, Y. and Tamaki, T. (2005). Nitrite is an alternativesource of NO in vivo. Am. J. Physiol. Heart. Circ.Physiol. 288, H2163-2170. https://doi.org/10.1152/ajpheart.00525.2004
  107. Webb, A., Bond, R., McLean, P., Uppal, R., Benjamin, N. andAhluwalia, A. (2004). Reduction of nitrite to nitric oxide duringischemia protects against myocardial ischemia-reperfusiondamage. Proc. Natl. Acad. Sci. USA 101, 13683-13688. https://doi.org/10.1073/pnas.0402927101
  108. Wei, D., Richardson, E. L., Zhu, K., Wang, L., Le, X., He, Y.,Huang, S. and Xie, K. (2003). Direct demonstration of negativeregulation of tumor growth and metastasis by host-induciblenitric oxide synthase. Cancer Res. 63, 3855-3859.
  109. Yerebakan, C., Ugurlucan, M., Bayraktar, S., Bethea, B. T. andConte, J. V. (2009). Effects of inhaled nitric oxide followinglung transplantation. J. Card. Surg. 24, 269-274. https://doi.org/10.1111/j.1540-8191.2009.00833.x
  110. Yim, C. Y., Bastian, N. R., Smith, J. C., Hibbs, J. B. Jr. andSamlowski, W. E. (1993). Macrophage nitric oxide synthesisdelays progression of ultraviolet light-induced murine skincancers. Cancer Res. 53, 5507-5511.
  111. Yu, J., deMuinck, E. D., Zhuang, Z., Drinane, M., Kauser, K.,Rubanyi, G. M., Qian, H. S., Murata, T., Escalante, B. andSessa, W. C. (2005). Endothelial nitric oxide synthase iscritical for ischemic remodeling, mural cell recruitment, andblood flow reserve. Proc. Natl. Acad. Sci. USA. 102,10999-11004. https://doi.org/10.1073/pnas.0501444102
  112. Zech, B., Kohl, R., von Knethen, A. and Brune, B. (2003). Nitricoxide donors inhibit formation of the Apaf-1/caspase-9apoptosome and activation of caspases. Biochem. J. 371,1055-1064. https://doi.org/10.1042/BJ20021720
  113. Zhang, R., Wang, L., Zhang, L., Chen, J., Zhu, Z., Zhang, Z. andChopp, M. (2003). Nitric oxide enhances angiogenesis viathe synthesis of vascular endothelial growth factor andcGMP after stroke in the rat. Circ. Res. 92, 308-313. https://doi.org/10.1161/01.RES.0000056757.93432.8C
  114. Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H. T., Donnini,S., Granger, H. J. and Bicknell, R. (1997). Nitric oxidesynthase lies downstream from vascular endothelial growthfactor-induced but not basic fibroblast growth factor-inducedangiogenesis. J. Clin. Invest. 99, 2625-2634. https://doi.org/10.1172/JCI119451

Cited by

  1. Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells vol.35, pp.2, 2011, https://doi.org/10.5142/jgr.2011.35.2.200
  2. Nitric Oxide (NO) and Cyclooxygenase-2 (COX-2) Cross-Talk in Co-Cultures of Tumor Spheroids with Normal Cells vol.4, pp.2, 2011, https://doi.org/10.1007/s12307-011-0063-x
  3. The neuroprotective effect of eupatilin against ischemia/reperfusion-induced delayed neuronal damage in mice vol.689, pp.1-3, 2012, https://doi.org/10.1016/j.ejphar.2012.05.042
  4. Pathophysiological Role of S-Nitrosylation and Transnitrosylation Depending on S-Nitrosoglutathione Levels Regulated by S-Nitrosoglutathione Reductase vol.26, pp.6, 2010, https://doi.org/10.4062/biomolther.2018.179