DOI QR코드

DOI QR Code

Varistor Application of Cr-doped ZnO-Sb2O3 Ceramics

Cr을 첨가한 ZnO-Sb2O3 세라믹스의 바리스터 응용

  • Hong, Youn-Woo (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo-Soon (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong-Hun (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 바이오IT융합센터) ;
  • 신효순 (한국세라믹기술원 바이오IT융합센터) ;
  • 여동훈 (한국세라믹기술원 바이오IT융합센터) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2010.09.09
  • Accepted : 2010.10.23
  • Published : 2010.11.01

Abstract

In this study, we have investigated the effects of Cr dopant on the sintering and electrical properties of ZnO-$Sb_2O_3$ (ZS) ceramics for varistor application. Spinel phases including $\alpha-$ and $\beta$-type was formed at ZS system and $\alpha$-spinel was stabilized by Cr doping in ZS system. Densification of ZS and ZSCr system was retarded to $1000^{\circ}C$ by the formation of spinel at $800^{\circ}C$. The morphology and its distribution of spinel phases in ZS system was homogeneous but disturbed by Cr doping. In ZSCr the densification of ZnO compared with ZS system was more retarded by low concentration of Zn interstitial defects induced by Cr doping in addition to the effect of spinel phase formation. The defects in each system were identified as attractive coulombic center (ZS: 0.13 eV, ZSCr: 0.12 eV) and singly charged oxygen vacancy $V_0^{\cdot}$ (ZSCr: 0.33 eV). In all ZS and ZSCr system have week varistor behavior by the formation of double Schottky barrier at grain boundary but its stability of barrier was very sensitive to sintering temperature.

Keywords

References

  1. A. F. Wells, Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984) p. 876.
  2. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, Oxford, 2001) p. 547.
  3. J. Kim, T. Kimura, and T. Yamaguchi, J. Mater. Sci. 24, 213 (1989). https://doi.org/10.1007/BF00660956
  4. V. Krasevec, M. Trontelj, and L. Golic, J. Am. Ceram. Soc. 74, 760 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06921.x
  5. B. A. Haskell, S. J. Souri, and M. A. Helfand, J. Am. Ceram. Soc. 82, 2106 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02048.x
  6. J. Bruley, U. Bremer, and V. Krasevac, J. Am. Ceram. Soc. 75, 3127 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04397.x
  7. M. A. McCoy, R. W. Grimes, and W. E. Lee, J. Mater. Res. 11, 2009 (1996). https://doi.org/10.1557/JMR.1996.0253
  8. S. Ezhilvalavan and T. R. N. Kutty, Appl. Phys. Lett. 68, 2693 (1996). https://doi.org/10.1063/1.116311
  9. J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc. 72, 1390 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb07659.x
  10. D. R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  11. T. Senda and R. C. Bradt, J. Am. Ceram. Soc. 74, 1296 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb04101.x
  12. T. Takemura, M. Kobayashi, Y. Takada, and K. Sato, J. Am. Ceram. Soc. 70, 237 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb04974.x
  13. Z. Brankovic, G. Brankovic, D. Poleti, and J. A. Varela, Ceram. Int. 27, 115 (2001). https://doi.org/10.1016/S0272-8842(00)00051-1
  14. F. Greuter and G. Blatter, Semicond. Sci. Technol. 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  15. Y.-W. Hong, H.-S. Shin, D.-H. Yeo, and J.-H. Kim, J. KIEEME 23, 368 (2010).
  16. Y.-W. Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 21, 738 (2008).
  17. D. Poleti, D. Vasovic, L. Karanovic, and Z. Brankovic, J. Solid State Chem. 112, 39 (1994). https://doi.org/10.1006/jssc.1994.1261
  18. T. Asokan and R. Freer, J. Mater. Sci. 25, 2447 (1990). https://doi.org/10.1007/BF00638040
  19. K. H. Bather, D. Hinz, N. Mattern, M. Bitterlich, and W. Bruckner, Phys. Stat. Solidi A 61, K9 (1980). https://doi.org/10.1002/pssa.2210610142
  20. Y. W .Hong and J. H. Kim, Ceram. Int. 30, 1301 (2004). https://doi.org/10.1016/j.ceramint.2003.12.028
  21. E. Olsson and G. L. Dunlop, J. Appl. Phys. 66, 3666 (1989). https://doi.org/10.1063/1.344453