DOI QR코드

DOI QR Code

Effects of Cadmium Exposure on Tissues of Carassius auratus

카드뮴 노출이 붕어(Carassius auratus) 조직에 미치는 영향

  • Shin, Myung-Ja (Department of Biological Science, Andong National University) ;
  • Kwon, O-Chang (Department of Biological Science, Andong National University) ;
  • Lee, Jong-Eun (Department of Biological Science, Andong National University) ;
  • Seo, Eul-Won (Department of Biological Science, Andong National University)
  • 신명자 (안동대학교 자연과학대학 생명과학과) ;
  • 권오창 (안동대학교 자연과학대학 생명과학과) ;
  • 이종은 (안동대학교 자연과학대학 생명과학과) ;
  • 서을원 (안동대학교 자연과학대학 생명과학과)
  • Received : 2010.07.07
  • Accepted : 2010.09.16
  • Published : 2010.10.30

Abstract

The present study aimed to investigate the level of accumulated heavy metal in various tissues of Carassius auratus after exposure to Cadmium (Cd), histologically and physiologically. After treating C. auratus with Cd, the accumulated Cd in gill tissues was detected to be of the highest content, and showed the lowest content in integument tissues. Also, Cd content increased in a time dependent manner and showed the highest accumulation in the tissues exposed for 20 days. Antioxidant enzyme activities showedhigher activity in the gill and integument than in the kidney and liver tissues. In the case of SOD, antioxidation activity of SOD in all Cd exposed tissues was higher than in unexposed tissues. The activities of SOD and CAT also became higher after Cd exposure. Gill tissues exposed to Cd showed an increased number of mucous cells between lamella in a time dependent manner. In addition, the gills showed morphological changes such as edema, exfoliation of epithelial cells, and fusion of the secondary lamellae. Also, exposure to Cd for 20 days had an effect on gill tissues, causing membrane damage in the mitochondria and nucleus. In kidney tissues, atrophied glomerulus was observed, and the empty space in Bowman's capsule was wider.

본 연구는 Cd에 노출시킨 붕어를 통하여 각 조직에 축적된 Cd 양과 항산화효소 활성을 통해 생리적인 변화 및 아가미와 신장 조직에서의 미세구조 변화를 조사하였다. Cd을 처리한 실험군 붕어 조직 내 Cd의 함량은 아가미 조직에서 가장 높았고 근육 조직에서 가장 낮았다. 또한 모든 조직에서 Cd의 함량은 노출기간이 길어질수록 증가하여 노출 20일에 가장 높았다. 항산화효소의 활성은 아가미와 근육 조직에서 높았으며, 신장과 간 조직에서 낮았다. 모든 조직에서 SOD의 활성이 가장 높았으며, SOD와 CAT의 활성은 10일에 높은 활성을 보이고 감소하는 유사한 결과를 보였다. Cd에 20일간 노출시킨 붕어의 아가미 조직은 대조군 아가미 조직에 비하여 노출기간이 길어질수록 새변 사이에 점액세포의 수가 증가하였으며, 이차새변에서는 부종, 상피세포의 박리와 새변과 새변이 융합한 형태도 관찰되었다. 또한 아가미 조직의 미토콘드리아와 핵에서는 막의 손상이 확인되었다. 신장 조직은 대조군에서 보우만 주머니 안에 사구체가 꽉 찬 정상구조였으나 노출기간이 길어짐에 따라 사구체가 수축하여 보우만 주머니 안의 공간이 넓은 형태로 관찰되었다.

Keywords

References

  1. Aebi, H. 1984. Catalase in vitro, pp. 121-126, In Packer, L. (ed.), Methods in Enzymology, 105, Academic Press Inc., New York.
  2. APHA-AWWA-WPCF. 1985. Standard methods for the examination of water and wastewater. pp. 715-742. 16th eds., Washington, D. C.
  3. Bae, H. K., E. K. Kim, S. S. Nam, C. K. Moon, S. H. Jeon, J. G. Na, and K. S. Park. 2002. A study on cadmium accumulations and histopathological changes in the gills of Crucian Carp (Carassius auratus). Korean J. Environ. Toxicol. 17, 53-61.
  4. Chance, B., H. Siec, and A. Boveris. 1979. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59, 527-605.
  5. Cho, K. S., J. H. Park, and J. C. Kang. 2004. Acute toxicity of Carassius auratus and Pungtungia herzi lavra on mercury, lead and copper exposure. J. Korean Soc. on Water Quality 20, 265-268.
  6. Cho, Y. G. and G. B. Kim. 2007. Bioaccumulation of Pb and Cd in Blue mussel (Mytilus edulis) and Oliver flounder (Paralichthys olivaceus) exposed to rearing media. J. Korean Soc. for Marine Eviron. Eng. 10, 21-28.
  7. Dudkey, R. E., D. J. Sovovoda, and C. D. Klaassen. 1982. Acute exposure to cadmium causes servere liver injury in rats. Toxicol. Appl. Pharmacol. 65, 302-313. https://doi.org/10.1016/0041-008X(82)90013-8
  8. EPA. 1978. Criteria and rationale for decision making in aquatic hazard evalution, aquatic hazard of pesticides task group, Amer. Inst. Biol. Science, pp. 46, Arlinton, Virginia.
  9. EPA. 1989. Short-term method for estimating the chronic toxicity of effluent and receiving water to freshwater organism, U.S. EPA-600/4-89-001.
  10. Faeder, E. J., S. Q. Chanet, and L. C. King. 1977. Biochemical and ultrastructural changes in livers of cadmium treated rats. Toxicol. Appl. Pharmacol. 39, 473-483. https://doi.org/10.1016/0041-008X(77)90139-9
  11. Fennel, R. H. and V. M. Pardo. 1967. Experimental glomerulonephritis in rats. Lab. Invest. 17, 483-488.
  12. Flohe, L., A. Wolfgang, and W. A. Gunzler. 1984. Assay of glutathione peroxidase, pp. 105-114, In Packer, L. (ed.), Methods in enzymatic analysis, Academic Press Inc., New York.
  13. Friberg, L. and J. Vostal. 1972. Mercury in the environment, pp. 17-23, CRS Press Inc., Cleveland.
  14. Goyer, R. A. 1986. Toxic effect of metals. Casarett and Doull’s Toxicology, pp. 623-680, In Klaassen, C. D., M. D. Amder, and J. Doull (eds.), Mecmillian Publishing Co., New York.
  15. Kim, J. S., M. J. Shin, J. E. Lee, and E. W. Seo. 2009. Heavy metal contents in tissues of Carassius auratus in Andong and Imha reservoir. J. Life Sci. 19, 1562-1567. https://doi.org/10.5352/JLS.2009.19.11.1562
  16. Lee, J. S., J. C. Kang, and Y. K. Shin. 2001. Histological responses of the flounder, Paralichthys olivaceus exposed to copper. J. Fish Pathol. 14, 81-90.
  17. McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase an enzymic function ferythrocuprotein (Hemocuprotein). J. Biol. Chem. 244, 6049-6055.
  18. Muller, M. E., D. A. Sanchez, H. L. Bergman, D. G. Rhem, and C. M. Wood. 1991. Nature and time course of acclimation to aluminium in juvenile brook trout (Salvelinus fontinalis). Gill histology. Can. J. Fish Sci. 48, 2016-2027. https://doi.org/10.1139/f91-240
  19. Park, S. H., I. S. Song, and Y. C. Cho. 2000. Experimental study on the accumulation of cadmium and other metals in the fish bodies (Oryzias latipes). Korean J. Environ. Hlth. Soc. 26, 25-31.
  20. Probes, G. S., W. F. Bousquet, and T. S. Miya. 1977. Kinetics of cadmium-induced hepatic and renal metallothionein synthesis in the mouse. Toxicol. Appl. Pharmacol. 39, 51-60. https://doi.org/10.1016/0041-008X(77)90176-4
  21. Schmitt, C. J. and G. M. Dethloff. 2000. Biomonitoring of environmental status and trends (BEST) program, selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems. U. S. Geological Survey, Biological Resources Division, Information and Technology Report, USGS/ BRD/ITR-2000-0005.
  22. Sorensen, E. M. 1991. Cadmium. In: Metal Poisoning in Fish. pp. 175-234, CRC press Inc., Boston.
  23. Stacey, N. H. and C, D. Klaassen. 1981. Comparison of the effects of metals on cellular injury and lipid peroxidation in isolated rat hepatocyte. J. Toxicol. Environ. Hlth. 7, 139. https://doi.org/10.1080/15287398109529965
  24. Webb, M. and A. T. Etienne. 1977. Studies on the toxicity and metabolism of cadmium thionein. Biochem. Pharmacol. 26, 25-30. https://doi.org/10.1016/0006-2952(77)90125-3
  25. Wendel, A. and S. Feuerstin. 1981. Drug-induced lipid peroxidation in mice-l. Modulation by monoxygenase activity, glutathione and selsnium status. Biochem. Pharmacol. 30, 2513-2520. https://doi.org/10.1016/0006-2952(81)90576-1

Cited by

  1. Effects of taurine on cadmium exposure in muscle, gill, and bone tissues ofCarassius auratus vol.7, pp.1, 2013, https://doi.org/10.4162/nrp.2013.7.1.22