DOI QR코드

DOI QR Code

운동강도가 rat의 MDA 농도와 SOD 활성에 미치는 영향

The Effects of Exercise Intensity on MDA Concentration and SOD Activity in Rats

  • 고기준 (대구미래대학 생활체육과)
  • Ko, Ki-Jun (Department of Practical Physical Education, Daegu Mirae College)
  • 투고 : 2010.05.14
  • 심사 : 2010.10.25
  • 발행 : 2010.10.30

초록

본 연구는 생후 6주령의 Sprague Dawley계 수컷 흰쥐 25마리를 대상으로 하여 5그룹(통제군, 수영군 4그룹)으로 분류하여 4주간의 1% 콜레스테롤 식이로 고지혈증을 유도한 후, 6주간의 수영을 운동강도(무부하, 저부하, 중부하, 고부하)에 따라 실시하였으며, 지질과산화 생성반응과 간조직의 항산화효소 활성도에 미치는 영향을 분석한 결과, MDA 생성 반응에서는 통제군에 비해 수영그룹 모두가 유의하게(p<0.001) 낮게 나타났고, 수영그룹 간의 비교에서는 중부하수영군이 나머지 3그룹에 비해 유의하게(p<0.001) 낮게 나타났다. 또한, SOD 활성도에서는 통제군에 비해 수영그룹 모두가 유의하게(p<0.01) 높게 나타났으며, 수영그룹간 비교에서는 저부하수영군에 비해 무부하, 중부하, 고부하수영군이 유의하게(p<0.01) 높게 나타났다. 이상의 결과로 보아, 규칙적인 수영은 운동강도에 따라 고지혈증 상태에서의 산화적 스트레스에 의한 MDA 생성 반응을 선택적으로 억제시키고, SOD 효소 활성을 증가시켜 대표적인 항산화시스템을 효과적으로 개선시키는데 도움을 줄 것으로 생각된다.

The purpose of the present investigation was to evaluate the effects of swimming training on response of lipid peroxide (MDA) and superoxide dismutase (SOD) enzyme activity of hyperlipidemic rats. Twenty-five male SD rats (6 weeks old) were randomly divided into a control group and 4 swimming groups after hyperlipidemia induction for 4 weeks through a 1% cholesterol diet. Swimming groups were then divided into unloaded swimming group, low-loaded swimming group, moderate-loaded swimming group and high-loaded swimming group by swimming intensity, and made to swim for 6 weeks (6 days/week). The loaded swimming group rats among the swimming groups swam a lead weight equivalent to 0%, 3%, 5% and 7% of body weight attached to the base of the tail. All data were expressed as mean and standard deviation by using an SPSS/$PC^+$ program, and to evaluate the differences between groups, data were analyzed by one-way analysis of variance and Duncan multiple range test (${\alpha}$=0.05) was performed to test the significant levels of differences between groups. The conclusions obtained from this study were as follows: 1) all swimming groups had significantly lower levels of MDA than the control group (p<0.001). Among the swimming groups, the moderate-loaded group had a significantly lower level than the unloaded group, low-loaded group and high-loaded group (p<0.001). 2) all swimming groups had significantly higher levels of SOD than the control group (p<0.01). Among swimming groups, the unloaded group, moderate-loaded group and high-loaded group had significantly higher levels than the low-loaded group (p<0.01).

키워드

참고문헌

  1. Alessio, H. M. and A. H. Goldfarb. 1988. Lipid peroxidation and scavenger enzymes during exercise: Adaptive response to training. J. Appl. Physiol. 64, 1333-1336.
  2. Alessio, H. M. 1993, Exercise-induced oxidative stress. Med. Sci. Sports Exerc. 25, 218-224.
  3. Ashton, T., C. C. Rowlands, E. Jones, Y. S. Young, S. K. Jackson, B. Davies, and J. R. I. Peters. 1998. Electron spin resonance spectroscopic detection of oxygen-centered radicals in human serum following exhaustive exercise. Eur. J. Appl. Physiol. 77, 498-502. https://doi.org/10.1007/s004210050366
  4. Atlay, M., T. Seene, O. Hanninen, and C. K. Sen. 1996. Skeletal muscle and heart antioxidant defences in response to sprint training. Acta. Physiol. Scand. 158, 129-134. https://doi.org/10.1046/j.1365-201X.1996.540305000.x
  5. Bank, W. and B. Chance. 1994. An oxidative defect in metabolic myopathies: disgnosis by noninvasive tissue oximetry [see comments]. Ann. Neurol. 36, 830-837. https://doi.org/10.1002/ana.410360606
  6. Cannon, J. G., S. F. Orencole, R. A. Fielding, M. Meydani, S. N. Meydani, M. A. Fiaterone, J. B. Blumberg, and W. J. Evans. 1990, Acute phase response to exercise: Interaction of age and vitamin E on neutrophils and muscle enzyme release. Am. J. Physiol. 259, R1214-R1219.
  7. Cooper, M. B., D. A. Jones, R. H. Edwards, G. C. Corbucci, G. Montanary, and C. Trevisani. 1986. The effect of marathon running on carnitine metaboliosm and some aspects of muscle mitochondrial activities and antioxidant mechanisms. J. Sports Sci. 4, 79-87. https://doi.org/10.1080/02640418608732103
  8. Criswell, D., S. Poewes, S. Dodd, L. Lawler, W. Edwards, K. Renshler, and S. Grinton. 1993. High intensity training induced changes in skeletal muscle antioxidant enzyme activity. Med. Sci. Sports Exerc. 25, 1135-1140.
  9. Davies, C. T. M., D. Halliday, D. J. Millward, M. J. Rennie, and J. R. Sutton. 1982. Glucose inhibits $CO_2$ production from leucine during whole-body exercise in man. J. Physiol. 332, 40-41.
  10. Davies, K. J., A. T. Quintanilha, G. A. Brooks, and I. Packer. 1982. Free radicals and tissue damage produced by exercise, Biochem. Biophys. Res. Commun. 107, 1198-1205. https://doi.org/10.1016/S0006-291X(82)80124-1
  11. Eiselt, J., J. Racek, V. Holecek, I. Krejcova, and K. Opatrny. 1996. Antioxidants and malondialdehyde during hemodialysis with cellulose diacetate and polysulfone membranes. Cas Lek Cesk. 135, 691-694.
  12. Guohua, C. and J. Chen. 1991. Effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase in trained mice. Arch. Biochem. Biophys. 291, 147-153. https://doi.org/10.1016/0003-9861(91)90117-2
  13. Hayes, A. and D. A. Williams. 1997. Contractile properties of clenbuterol-mdx muscle are enhanced by low-intensity swimming. J. Appl. Physiol. 82, 435-439.
  14. Jenkins, R. R., R. Friedland, and H. Howald. 1984. The relationship of oxygen uptake to superoxide dismutase and catalase activity in human skeletal muscle. Int. J. Sports Med. 5, 11-14. https://doi.org/10.1055/s-2008-1025872
  15. Jenkins, R. R. 1988. Free radical chemistry: relationship to exercise. Sports Med. 5, 156-170. https://doi.org/10.2165/00007256-198805030-00003
  16. Jenkins, R. R., K. Krause, and L. S. Schofield. 1993. Influence of exercise on clearance of oxidant stress products and loosely bound iron. Med. Sci. Sports Exerc. 25, 213-217.
  17. Ji, L. L. 1993. Antioxidant enzyme response to exercise and aging. Med. Sci. Sports Exerc. 25, 225-231.
  18. Ji, L. L. 1996. Exercise, oxidative stress and antioxidants. Am. J. Sports Med. 24, 20-24.
  19. Ji, L. L., F. W. Statman, and H. A. Lardy. 1988. Antioxidant enzyme in rat liver and skeletal muscle: influences of selenium deficiency acute exercise and chronic training. Arch. Biochem. Biophys. 263, 150-160. https://doi.org/10.1016/0003-9861(88)90623-6
  20. Kanter, M. M., R. L. Hamlin, D. V. Unverferth, and H. W. Davis. 1985. Effects of exercise training on antioxidant of doxorubicin. J. Appl. Physiol. 59, 1298-1303.
  21. Kanter, M. M., L. A. Kaminsky, L. L. Laham-Saeger, G. R. Lesmes, and N. D. Nequin. 1986. Serum enzyme levels and lipid peroxidation in ultramarathon runner. Ann. Sports Med. 3, 39-41.
  22. Kanter, M. M., G. R. Lesmes, L. A. Kaminsky, J. L. La Ham-Saeger, and N. D. Nequin. 1988. Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometer race: relationship to lipid peroxidation. Eur. J. Appl. Physiol. 57, 60-63. https://doi.org/10.1007/BF00691239
  23. Kanter, M. M., L. A. Nolte, and J. O. Holloszy. 1993. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J. Appl. Physiol. 7492, 965-969.
  24. Kawanaka, K., I. Tabata, and M. Higuchi. 1997. More tetanic contractions are requuired for activating glucose transport maximally in trained muscle. J. Appl. Physiol. 83, 429-433.
  25. Kihlstrom, M. 1990. Protection effect of endurance training against reoxygenation induced in injuries treatments. J. Appl. Physiol. 68, 1672-1678.
  26. Lawler, J. M., S. K. Powers, H. Van Dijk, T. Visser, M. J. Kordus, and L. L. Ji. 1993. Acute exercise and skeletal muscle antioxidant and metabolic enzymes : effects of fiber type and age. Am. J. Physiol. 265, 1344-1350.
  27. Leichtweis, S. B., C. Leenuwenburgh, D. J. Parmelee, R. Fiebig, and L. L. Ji. 1997. Rigorous swim training impairs mitochondrial function in post-ischaemic rat heart. Acta. Physiol. Scand. 160, 139-148. https://doi.org/10.1046/j.1365-201X.1997.00138.x
  28. Lovlin, R., W. Cottle, I. Pyke, M. Kavanagh, and A. N. Belcastro. 1987. Are induces of free radical damage related to exercise intensity?. Eur. J. Appl. Physiol. 6, 313-316.
  29. Maughan, R. J., A. E. Donelly, M. Gleeson, P. H. Whithing, K. A. Walker, and P. J. Clough. 1989. Delayed onset muscle damage and lipid peroxidation in man after a downhill run. Muscle Nerve. 12, 332-336. https://doi.org/10.1002/mus.880120412
  30. Ohno, H., H. Yamashita, T. Ookawara, D. Saitoh, K. Mimura, and N. Taniguchi. 1992. Training effects on concentration of immunoreactive superoxide dismutase isoenzymes in human plasma. Tohoku J. Exp. Med. 167, 301-303. https://doi.org/10.1620/tjem.167.301
  31. Oyanagui, Y. 1984. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity, Ann. Biochem. 42, 290.
  32. Palmer, F. M., D. C. Nieman, D. A. Henson, S. R. McAnulty, I. McAnulty, N. S. Swick, A. C. Utter, D. M. Vinci, and J. D. Morrow. 2003. Influence of vitamin C supplementation on oxidative and salivary IgA changes following an ultramarathon. Eur. J. Appl. Physiol. 89, 100-107. https://doi.org/10.1007/s00421-002-0756-4
  33. Pincemail, J., G. Camus, A. Roesgen, E. Dreezen, Y. Bertrand, M. Lismonde, G. Deby-Dupont, and C. Deby. 1990. Exercise induces pentane production and neutrophil activation in humans : Effect of proprandol. Eur. J. Appl. Physiol. 61, 319-322. https://doi.org/10.1007/BF00357620
  34. Powers, S. K., L. L. Ji, and C. Leeuwenburgh. 1999. Exercise training induced alterations in skeletal muscle antioxidant capacity: a brief review. Med. Sci. Sports Exerc. 31, 987-997. https://doi.org/10.1097/00005768-199907000-00011
  35. Salminen, A. and V. Vihko. 1983. Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiol. Scand. 117, 109-113. https://doi.org/10.1111/j.1748-1716.1983.tb07184.x
  36. Sen, C. K. 1995. Oxidants and antioxidants in exercise. J. Appl. Physiol. 79, 675-686.
  37. Sen, C. K., M. Atalay, and O. Hanninen. 1994. Exercise-induced oxidative stress: glutathione supplementation and deficiency. J. Appl. Physiol. 77, 2177-2187.
  38. Shimomura, Y., M. Suzuki, S. Sugiyama, Y. Hanaki, and T. Ozawa. 1991. Protective effect of coenzymes Q10 on exercise-induced muscular injury. Biochem. Biophy. Res. Commun. 176, 349-355. https://doi.org/10.1016/0006-291X(91)90931-V
  39. Starnes, J. W., C. Graciela, R. P. Farrar, and J. P. Kehrer. 1989. Skeletal muscle lipid peroxidation in exercised and food-restricted rats during aging. J. Appl. Physiol. 67, 69-75.
  40. Urso, M. L. and P. M. Clarkson. 2003, Oxidative stress, and antioxidant supplementation. Toxicology 189, 41-54. https://doi.org/10.1016/S0300-483X(03)00151-3
  41. Vani, M., G. P. Reddy, K. Thyagaraju, and P. Reddanna. 1990. Glutathione-S transferase, superoxide dismutase, xanthine oxidase, catalase, glutathione peroxidase and lipid peroxidation in the liver of exercised rat. Biochem. Int. 21, 17-26.
  42. Viguie, C. A., B. Frei, M. K. Shingenaga, B. N. Ames, L. Packer, and G. A. Brilks. 1984. Oxidant stress in humans during consecutive days of exercise. Med. Sci. Sports Exerc. 22, 514.
  43. Viinikka, L., J. Vuori, and O. Ylikorkala. 1994. Lipid peroxides, protacyclin, and thromboxane $A_2$ in runners during acute exercise. Med. Sci. Sports Exerc. 16, 275-277.
  44. Witt, E. H., A. Z. Reznick, C. A. Viguie, P. Starke-Reed, and L. Packer. 1992. Exercise, oxidative damage and effects of antioxidant manipulation. J. Nutri. 1220, 766-773.
  45. Yagi, K. 1987. Lipid peroxides and human diseases. Chem. Phys. Lipids 45, 337. https://doi.org/10.1016/0009-3084(87)90071-5
  46. Zima, T., V. Tesar, J. Platenik, I. Rychlik, M. Merta, and K. Nemecek. 1997. The influence of cyclosporin on lipid peroxidtaion and superoxide dismutase in adriamycin nephropathy in rats. Nephron 75, 464-468. https://doi.org/10.1159/000189586