DOI QR코드

DOI QR Code

기후변동에 대한 한국 하천유량의 탄력성

Climate Elasticity of Korean Streamflows

  • 투고 : 2010.07.30
  • 심사 : 2010.09.02
  • 발행 : 2010.10.31

초록

본 연구에서는 강수량과 기온의 변동에 따른 국내 하천유량의 민감도를 평가하였다. 8개상류 다목적댐 유입량과 기후자료를 이용하여 기후가 유출량 변화에 미치는 영향을 분석하였다. 결과적으로 연유출량의 변화는 강수의 변화에 크게 영향을 받았지만 강수량이 평년에 비해 적고 기온이 높은 연도에서는 기온이 낮은 연도에 비해 연유출량이 더 크게 감소하는 경향을 보였다. 이러한 유출변화 특성은 한국의 수자원이 지구온난화로 인한 기온증가 상황에서 가뭄피해에 더 취약해질 가능성을 보여주었다. 또한, 본 연구에서는 공간적인 기후탄력성을 평가하기 위해 109개 중권역에 PRMS 모형을 적용하고 이 결과를 이용하여 기후탄력성을 평가하였다. 국내의 기후탄력성은 1.5~1.9로, 강수가 +20% 증가할 경우 연유출량은 +30~+38% 정도 증가되는 것으로 나타났다.

We investigated the sensitivity of Korean streamflows to climate variation. Historical dam inflows and climate data for eight multi-purpose dam sites were collected and examined to determine key factors affecting streamflow change. The results show that annual streamflow primarily responds to change in precipitation rather than temperature. However, the combination of less precipitation and high temperature induces a more serious decrease in streamflow than does similar precipitation and with low temperature. This result indicates that Korean water resources could be more vulnerable to drought due to increasing temperature caused by global warming. To estimate spatial differences in climate sensitivity, we also calculated climate elasticity for 109 mid-size watersheds using streamflow simulated by the Precipitation Runoff Modeling System (PRMS). Climate elasticity ranges over 1.5~1.9, indicating that a +20% increase in annual precipitation leads to a +30~+38% increase in annual streamflow.

키워드

참고문헌

  1. 김병식, 김수전, 김형수, 전환돈(2010). "기후변화와 토지 피복변화를 고려한 한강 유역의 수자원 영향 평가." 한국수자원학회논문집, 한국수자원학회, 제43권, 제3호, pp. 309-323.
  2. 박경신, 정은성, 김상욱, 이길성(2009). "기후변화 및 도시화에 따른 유황곡선 및 BOD 농도지속곡선 변화." 한국수자원학회논문집, 한국수자원학회, 제42권, 제12호, pp. 1091-1102. https://doi.org/10.3741/JKWRA.2009.42.12.1091
  3. 배덕효, 정일원, 이병주(2007). "A2 시나리오에 따른 국내 수자원의 변동성 전망." 한국수자원학회논문집, 한국수자원학회, 제40권, 제12호, pp. 921-930. https://doi.org/10.3741/JKWRA.2007.40.12.921
  4. 손경환, 이병주, 배덕효(2010). "Multi-GCMs의 기후시나리오를 이용한 홍수특성변화 평가." 한국수자원학회논문집, 한국수자원학회, (In press).
  5. 안소라, 박민지, 박근애, 김성준(2009). "기후변화가 경안천 유역의 수문요소에 미치는 영향 평가." 한국수자원학회논문집, 한국수자원학회, 제42권, 제1호, pp. 33-50. https://doi.org/10.3741/JKWRA.2009.42.1.33
  6. 이병주, 정일원, 배덕효(2009). "다변량 통계분석을 이용한 준분포형 유출모형 매개변수 지역화." 한국수자원학회논문집, 한국수자원학회, 제42권, 제2호, pp. 149-160. https://doi.org/10.3741/JKWRA.2009.42.2.149
  7. 정대일, 강재원(2009). "증발산 관련 기후인자와 팬증발량의 변화 분석." 한국수자원학회논문집, 한국수자원학회, 제41권, 제11호, pp. 1095-1106. https://doi.org/10.3741/JKWRA.2009.42.2.117
  8. 정상만, 서형덕, 김형수, 한규하(2008). "기후인자의 변화에 따른 대청댐유역의유출민감도 모의평가- 4th IPCC 보고서의 결과를 기준으로 - ." 한국수자원학회논문집, 한국수자원학회, 제41권, 제11호, pp. 1095-1106.
  9. 정일원, 배덕효(2005). "국내유역에서의 PRMS 모형의 적용성에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제38권, 제9호, pp. 713-725.
  10. 정일원, 배덕효, 임은순(2007). "수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(II): 유역별 유출시나리오 구축." 한국수자원학회논문집, 한국수자원학회, 제40권, 제3호, pp. 205-214. https://doi.org/10.3741/JKWRA.2007.40.3.205
  11. 정일원, 이병주, 전태현, 배덕효(2008). "유출모형이 기후변화 수자원 영향평가에 미치는 영향 분석." 한국수자원학회논문집, 한국수자원학회, 제41권, 제9호, pp.907-917. https://doi.org/10.3741/JKWRA.2008.41.9.907
  12. 최대규, 김문성, 김남원, 김상단(2009). "CGCM 미래기후 정보를 이용한 기후변화가 병성천 유역 수문 및 수질 반응에 미치는 영향분석." 한국수자원학회논문집, 한국수자원학회, 제42권, 제11호, pp. 921-931. https://doi.org/10.3741/JKWRA.2009.42.11.921
  13. Bae, D.H., Jung, I.W., and Lettenmaier, D.P. (2010). "Hydrologic uncertainties of climate change on IPCC AR4 GCM simulations in the Chungju basin, Korea." Journal of Hydrology (in review).
  14. Bae, D.H., Jung, I.W., and Chang, H. (2008a). "Longterm trend of precipitation and runoff in Korean river basins." Hydrological Processes, Vol. 22, No. 14, pp. 2644-2656. https://doi.org/10.1002/hyp.6861
  15. Bae, D.H., Jung, I.W., and Chang, H. (2008b). "Potential changes in Korean water resources estimated by high-resolution climate simulation." Climate Research, Vol. 35, No. 3, pp. 213-226. https://doi.org/10.3354/cr00704
  16. Barnett, T.P., Pierce, D.W., Hidalgo, H.G., Bonfils, C., Santer, B.D., Das, T., Bala, G., Wood, A.W., Nozawa, T., Mirin, A.A., Cayan, D.R., and Dettinger, M.D. (2008). "Human-induced changes in the hydrology of the western United States." Science, Vol. 319, No. 5866, pp. 1080-1083. https://doi.org/10.1126/science.1152538
  17. Bates, B., Kundzewicz, Z.W., Wu, S., and Palutikof, J.P. (2008). Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change (IPCC), Geneva. p. 210.
  18. Burlando, P., and Rosso, R. (2002). "Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy." Hydrological Processes, Vol. 16, No. 6, pp. 1177-1199. https://doi.org/10.1002/hyp.1056
  19. Chang, H., Franczyk, J., Im, E.S., Kwon, W.T., Bae, D.H., and Jung, I.W. (2007). "Vulnerability of Korean water resources to climate change and population growth." Water Science and Technology, Vol. 56, No. 4, pp. 57-62. https://doi.org/10.2166/wst.2007.536
  20. Chang, H., Franczyk, J., and Kim, C. (2009). "What is responsible for increasing flood risk? The case of Gangwon province, Korea." Natural Hazards, Vol. 48, No. 3, pp. 339-354. https://doi.org/10.1007/s11069-008-9266-y
  21. Chang, H., and Jung, I.W. (2010). "Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon." Journal of Hydrology, Vol. 388, pp. 186-207. https://doi.org/10.1016/j.jhydrol.2010.04.040
  22. Chang, H., and Kwon, W.T. (2007). "Spatial variations of summer precipitation trends in South Korea, 1973-2005." Environmental Research Letters, Vol. 2, No. 4, DOI: 10.1088/1748-9326/2/4/045012.
  23. Chiew, F.H.S. (2006). "Estimation of rainfall elasticity of streamflow in Australia." Hydrological Sciences Journal, Vol. 51, No. 4, pp. 613-625. https://doi.org/10.1623/hysj.51.4.613
  24. Choi, Y. (2004). "Trends in temperature and precipitation extreme events in Korea daily precipitation events and their extremes in the southern region of Korea." Journal of the Korean Geographical Society Environmental Impact Assessment, Vol. 1139, No. 5, pp. 711-721.
  25. Chung, E.S., Park, K., and Lee, G. (2010). "The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed." Hydrological Processes, DOI: 10.1002/hyp.7781.
  26. Fu, G.B., Charles, S.P., and Chiew, F.H.S. (2007). "A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow." Water Resources Research, Vol. 43, DOI: 10.1029/2007wr005890.
  27. Hamlet, A.F., and Lettenmaier, D.P. (2007). "Effects of 20th century warming and climate variability on flood risk in the western U.S.." Water Resources Research, Vol. 43, No. 6, DOI: 10.1029/2006qe005099.
  28. Hamon, W.R. (1961). "Estimating potential evapotranspiration, Proceedings of the American Society of Civil Engineers." Journal of the Hydraulic Division, Vol. 87, No. HY3, pp. 107-120.
  29. Hay, L.E., Clark, M.P., Pagowski, M., Leavesley, G.H., and Gutowski, W.J. (2006). "One-way coupling of an atmospheric and a hydrologic model in Colorado." Journal of Hydrometeorology, Vol. 7, No. 4, pp. 569-589. https://doi.org/10.1175/JHM512.1
  30. Im, E.S., Jung, I.W., and Bae, D.H. (2010a). "The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection." International Journal of Climatology, DOI: 10.1002/joc.2063.
  31. Im, E.S., Jung, I.W., Chang, H., Bae, D.H., and Kwon, W.T. (2010b). "Hydroclimatological response to dynamically downscaled climate change simulations for Korean basins." Climatic Change, Vol. 100, No. 3-4, pp. 485-508. https://doi.org/10.1007/s10584-009-9691-2
  32. Jung, I.W., Bae, D.H., and Kim, G. (2010a). "Recent trends of mean and extreme precipitation in Korea." International Journal of Climatology, DOI: 10.1002/joc.2068.
  33. Jung, I.W., and Chang, H. (2010). "Assessment of future runoff trends under multiple climate change scenarios in the Willamette River Basin, Oregon, USA." Hydrological Processes, DOI: 10.1002/hyp.7842.
  34. Kim, B.S., Kim, H.S., Seoh, B.H., and Kim, N.W. (2007). "Impact of climate change on water resources in Yongdam Dam Basin, Korea." Stochastic Environmental Research and Risk Assessment, Vol. 21, No. 4, pp. 355-373. https://doi.org/10.1007/s00477-006-0070-5
  35. Kim, C., Suh, M.S., and Hong, K.O. (2009). "Bayesian Changepoint Analysis of the Annual Maximum of Daily and Subdaily Precipitation over South Korea." Journal of Climate, Vol. 22, No. 24, pp. 6741-6757. https://doi.org/10.1175/2009JCLI2800.1
  36. Kim, Y.O., Seo, Y.W., Lee, D.R., and Yoo, C. (2005). "Potential effects of global warming on a water resources system in Korea." Water International, Vol. 30, No. 3, pp. 400-405. https://doi.org/10.1080/02508060508691881
  37. Kleinen, T., and Petschel-Held, G. (2007). "Integrated assessment of changes in flooding probabilities due to climate change." Climatic Change, Vol. 81, No. 3-4, pp. 283-312. https://doi.org/10.1007/s10584-006-9159-6
  38. Leavesley, G.H., Lichty, R.W., Troutman, B.M., and Saindon, L.G. (1983). Precipitation-Runoff Modeling System, User's manual. Water-Resources Investigations, pp. 83-4238.
  39. Leavesley, G.H., Markstrom, S.L., Restrepo, P.J., and Viger, R.J. (2002). "A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modelling." Hydrological Processes, Vol. 16, No. 2, pp. 173-187. https://doi.org/10.1002/hyp.344
  40. Lee, K.S., and Chung, E.S. (2007). "Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed." Hydrological Processes, Vol. 21, No. 22, pp. 3046-3056. https://doi.org/10.1002/hyp.6513
  41. Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., Lettenmaier, D.P., and Stouffer, R.J. (2008). "Climate change-Stationarity is dead: Whither water management?." Science, Vol. 319, No. 5863, pp. 573-574. https://doi.org/10.1126/science.1151915
  42. Nash, L.L., and Gleick, P.H. (1991). "Sensitivity of streamflow in the Colorado basin to climatic changes." Journal of Hydrology, Vol. 125, No. 3-4, pp. 221-241. https://doi.org/10.1016/0022-1694(91)90030-L
  43. Niemann, J.D., and Eltahir, E.A.B. (2005). "Sensitivity of regional hydrology to climate changes, with application to the Illinois River basin." Water Resources Research, Vol. 41, No. 7, DOI: 10.1029/2004wr003893.
  44. Oki, T., and Kanae, S. (2006). "Global hydrological cycles and world water resources." Science, Vol. 313, No. 5790, pp. 1068-1072. https://doi.org/10.1126/science.1128845
  45. Oudin, L., Andreassian, V., Perrin, C., Michel, C., and Le Moine, N. (2008). "Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments." Water Resources Research, Vol. 44, No. 3, DOI: 10.1029/2007wr006240.
  46. Park, G.A., Ahn, S.R., Lee, Y.J., Shin, H.J., Park, M.J., and Kim, S.J. (2009). "Assessment of climate change impact on the inflow and outflow of two agricultural reservoirs in Korea." Transactions of the Asabe, Vol. 52, No. 6, pp. 1869-1883. https://doi.org/10.13031/2013.29215
  47. Revelle, R.R., and P.E. Waggoner (1983). Effects of a carbon dioxide-induced climatic change on water supplies in the Western United States. in Changing Climate: Report of the carbon dioxide assessment committee, National Academy Press, Washington D.C.
  48. Rosenbrock, H.H. (1960) "An automatic method of finding the greatest or least value of a function." Computer Journal, Vol. 3, pp. 175-184. https://doi.org/10.1093/comjnl/3.3.175
  49. Sankarasubramanian, A., and Vogel, R.M. (2003). "Hydroclimatology of the continental United States." Geophysical Research Letters, Vol. 30, No. 7, DOI: 10.1029/2002gl015937.
  50. Sankarasubramanian, A., Vogel, R.M., and Limbrunner, J.F. (2001). "Climate elasticity of streamflow in the United States." Water Resources Research, Vol. 37, No. 6, pp. 1771-1781. https://doi.org/10.1029/2000WR900330
  51. Schaake, J. (1990). From climate to flow. in Climate Change and U.S. Water Resources. edited by P.E. Waggoner, John Wiley, New York, pp. 177-206.
  52. Vogel, R.M., Wilson, I., and Daly, C. (1999). "Regional regression models of annual streamflow for the United States." Journal of Irrigation and Drainage Engineering-Asce, Vol. 125, No. 3, pp. 148-157. https://doi.org/10.1061/(ASCE)0733-9437(1999)125:3(148)
  53. Wilby, R.L., and Harris, I. (2006). "A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK." Water Resources Research, Vol. 42, No. 2, DOI: 10.1029/2005wr004065.
  54. Willmott, C.J. (1982). "Some comments on the evaluation of model performance." Bulletin of the American Meteorological Society, Vol. 63, No. 11, pp. 1309-1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
  55. Wood, A.W., Leung, L.R., Sridhar, V., and Lettenmaier, D.P. (2004). "Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs." Climatic Change, Vol. 62, No. 1-3, pp. 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

피인용 문헌

  1. Possible change in Korean streamflow seasonality based on multi-model climate projections vol.27, pp.7, 2013, https://doi.org/10.1002/hyp.9215