표준화재곡선을 이용한 잔존부착강도 평가 간략방법 제안

Simplified Evaluation Method for Residual Bond Strength of Reinforced Concrete Using Standard Fire Curve

  • 문도영 (경성대학교 토목공학과)
  • 투고 : 2010.07.16
  • 심사 : 2010.09.28
  • 발행 : 2010.10.31

초록

화해를 입은 구조물의 안전성 확보에는 초기대응이 매우 중요기 때문에 신속한 의사결정이 필요하다. 본 논문에서는 화해를 입은 구조물의 이형철근과 콘크리트 간 잔존부착강도를 평가할 수 있는 간략화된 방법을 제시하였다. 제안된 방법은 화재강도 즉, 화재 중 최고노출 온도 뿐 아니라 화재지속시간도 고려할 수 있도록 하였다. 제안된 방법의 검증 및 비교를 위하여 화해를 입은 대구지하철 역사의 현장조사 결과를 인용하였으며, 해석결과 그 효용성을 확인하였다.

For the enhancement of structural safety of thermally damaged reinforced concrete structure, rapid evaluation of damage in the structure is very important. This study addresses a simplified method which is equivalent to the standard fire curve (ISO 834) for the residual bond strength evaluation. In the proposed method, a exposure duration as well as the maximum temperature can be considered. For the comparisons with conventional methods, concrete properties obtained from the report of Daegu subway fire accident were referred and the results support the applicability of the proposed method in this study.

키워드

참고문헌

  1. 대구지하철공사 (2003) 대구지하철 1호선 중앙로역 정밀안전진단자문회의.
  2. 심종성, 문도영, 이정환 (2003) 화재로 인해 손상받은 철근 콘크리트 구조물의 콘크리트 부착강도 평가, 한국콘크리트학회 가을학술발표회 논문집, (사)한국콘크리트학회, pp. 211-214.
  3. Buchanan, A.H. (2001) Structural Design for Fire Safety, Wiley, England
  4. CEB-FIP (2007) Fire design of concrete structures-materials, structures and modelling, Bulletin 38, pp. 1-88.
  5. Chaing, C. and Tsai, C.-L. (2003) Time-temperature analysis of bond strength of a rebar after fire exposure, Cement and Concrete Research, Vol. 33, pp. 1651-1654. https://doi.org/10.1016/S0008-8846(03)00139-X
  6. Chaing, C., Tsai, C.-L. and Kan, Y.-C. (2000) Acoustic inspection of bond strength of steel reinforced mortar after exposure to elevated temperatures, Ultrasonics, Vol. 38, pp. 534-536. https://doi.org/10.1016/S0041-624X(99)00088-8
  7. Culfik, M.S. and Ozturan, T. (2010) Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations, Construction and Building Materials, Vol. 24, pp. 1486-1493. https://doi.org/10.1016/j.conbuildmat.2010.01.020
  8. Diederichs, U. and Schneider, U. (1981) Bond strength at high temperatures, Magazine of Concrete Research, Vol. 33, No. 115, pp. 75-84. https://doi.org/10.1680/macr.1981.33.115.75
  9. EL-Hawary, M.M. and Hamoush, S.A. (1995) Bond Shear Modulus of Reinforced Concrete at High Temperatures, Engineering Fracture Mechanics, Vol. 55, No. 6, pp. 991-999.
  10. Haddad, R.H. and Abendeh, R.M. (2004) Effect of thermal cycling on bond between reinforcement and fiber reinforced concrete, Cement & Concrete Composites, Vol. 26, pp. 743-752. https://doi.org/10.1016/S0958-9465(03)00083-0
  11. Haddad, R.H., Al-Saleh, R.J. and Al-Akhras, N.M. (2008) Effect of elevated temperature on bond between steel reinforcement and fiber reinforced concrete, Fire Safety Journal, Vol. 43, pp. 334-343. https://doi.org/10.1016/j.firesaf.2007.11.002
  12. Haddad, R.H. and Shannis, L.G. (2004) Post-fire behavior of bond between high strength pozzolanic concrete and reinforcing steel, Construction and Building Materials, Vol. 18, pp. 425-435. https://doi.org/10.1016/j.conbuildmat.2004.03.006
  13. ISO 834 (1975) Fire Resistance Tests-Elements of Building construction, International Organization for Standardization.
  14. Kang, B.H. (2002) Properties of High-heated Concrete, Magazine of the Korea Concrete Institute, Vol. 14, No. 2, pp. 17-23.
  15. Morley, P.D. and Royles, R. (1980) The influence of high temperature on the bond in reinforced concrete, Fire Safety Journal, Vo. 2, No. 4, pp. 243-255. https://doi.org/10.1016/0379-7112(79)90024-9
  16. Nawy, E.G. (1990) Reinforced Concrete, Prentice Hall Inc, New Jersey, p. 380.