DOI QR코드

DOI QR Code

A Phylogenetic Study of Korean Rodents (Muridae, Sciuridae) Based on Mitochondrial and Nuclear DNA

  • Jung, Gi-La (Department of Green Life Science, Sangmyung University) ;
  • Lee, Seo-Jin (Conservation Genome Resource Bank for Korean Wildlife and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Chuel-Kyu (Department of Toxicological Evaluation and Research, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration) ;
  • Lee, Hang (Conservation Genome Resource Bank for Korean Wildlife and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Chang-Bae (Department of Green Life Science, Sangmyung University)
  • 투고 : 2010.05.27
  • 심사 : 2010.07.08
  • 발행 : 2010.07.31

초록

The subfamily Murinae is a very controversial group concerning their phylogenetic relationship. Previous studies could not resolve phylogeny among four genera Apodemus, Micromys, Mus and Rattus of the Muridae. In the present study, eight rodent species resident in South Korea were collected and phylogenetically analyzed based on sequence data of five mitochondrial and nuclear DNA regions: 12S rRNA, cytochrome b gene (cyt b), cytochrome oxidase II (COII), control region of mitochondrial DNA, and a thyroglobulin (Tg) of nuclear DNA. According to the phylogeny of the concatenated data, M. musculus separated early in Murinae (ML 100%; BA 1.00 pp) and the genus Rattus grouped with the harvest mouse, M. minutes; these were separated from the genus Apodemus with relatively strong support (ML 74%; BA 0.76 pp). The Siberian chipmunk population was also examined using the five genes to obtain better resolution. The phylogeny for Korean rodents determined using the 12S rRNA, cyt b, COII and control regions discriminated the Siberian chipmunk populations from Korea, Russia, and China.

키워드

참고문헌

  1. DeBry, R.W. and R.M. Sagel, 2001. Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Mol. Phylogenet. Evol., 19: 290-301. https://doi.org/10.1006/mpev.2001.0945
  2. Drummond, A.J., B. Ashton, M. Cheung, J. Heled, M. Kearse, R. Moir, S. Stones-Havas, T. Thierer and A. Wilson, 2009. Geneious v4.7, available from http://www.geneious.com.
  3. Huchon, D., O. Madsen, M. Sibbald, K. Ament, M.J. Stanhope, F. Catzeflis, W.W. de Jong and E.J.P. Douzery, 2002. Rodent phylogeny and a timescale for the evolution of glires: evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol., 19: 1053-1065. https://doi.org/10.1093/oxfordjournals.molbev.a004164
  4. Huelsenbeck, J.P. and F. Ronquist, 2003. MrBayes: a program for the Bayesian inference of phylogeny, 3.0. Rochester, NY.
  5. Irwin, D.M., T.D. Kocher and A.C. Wilson, 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol., 32: 128-144. https://doi.org/10.1007/BF02515385
  6. Koh, H.S., J. Wang, B.K. Lee, B.G. Yang, S.W. Heo, K.H. Jang and T.Y. Chun, 2009. A phylogroup of the Siberian chipmunk from Korea (Tamias sibiricus barberi) revealed from the mitochondrial DNA cytochrome b gene. Biochem Genet, 47: 1-7. https://doi.org/10.1007/s10528-008-9200-8
  7. Lecompte, E., K. Aplin, C. Denys, F. Catzeflis, M. Chades and P. Chevret, 2008. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol. Biol., 8: 199. https://doi.org/10.1186/1471-2148-8-199
  8. Lee, M.Y., A.A. Lissovsky, S.K. Park, E.V. Obolenskaya, N.E. Dokuchaev, Y.P. Zhang, L. Yu, Y.J. Kim, V. Inaa, A. Myslenkov, T.Y. Choi, M.S. Min and H. Lee, 2008. Mitochondrial cytochrome b sequence variations and population structure of Siberian chipmunk (Tamias sibiricus) in Northeastern Asia and population substructure in South Korea. Mol. Cells, 26: 566-575.
  9. Martin, Y., G. Gerlach, C. Schlotterer and A. Meyer, 2000. Molecular phylogeny of European muroid rodents based on complete cytochrome b sequences. Mol. Phylogenet. Evol., 6: 37-47. https://doi.org/10.1006/mpev.1999.0760
  10. Michaux, J., E. Bellinvia and P. Lymberakis, 2005. Taxonomy, evolutionary history and biogeography of the broad-toothed field mouse (Apodemus mystacinus) in the eastern Mediterranean area based on mitochondrial and nuclear genes. Biol. J. Linn. Soc. Lond., 85: 53-63. https://doi.org/10.1111/j.1095-8312.2005.00469.x
  11. Michaux, J., P. Chevret, M.G. Filippucci and M. Macholan, 2002. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol. Phylogenet. Evol., 23: 123-136. https://doi.org/10.1016/S1055-7903(02)00007-6
  12. Michaux, J., P. Chevret and S. Renaud, 2007. Morphological diversity of Old World rats and mice (Rodentia, Muridae) mandible in relation with phylogeny and adaptation. J. Zoolog. Syst. Evol. Res., 45(3): 263-279. https://doi.org/10.1111/j.1439-0469.2006.00390.x
  13. Mills, J.N. and J.E. Childs, 1998. Ecologic studies of rodent reservoirs: their relevance for human health. Emerging Infect. Dis., 4: 529-537. https://doi.org/10.3201/eid0404.980403
  14. Nowak, R.M., 1999. Walker's Mammals of the World (6th ed). The Johns Hopkins University Press, Baltumore, pp. 1243-1714.
  15. Nylander, J.A.A., 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
  16. Pages, M., S. Calvignac, C. Klein, M. Paris, S. Hughes and C. Hanni, 2008. Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny. Mol. Phylogenet. Evol., 47(1): 73-83. https://doi.org/10.1016/j.ympev.2007.10.019
  17. Springer, M.S., R.W. DeBry, C. Douady, H.M. Amrine, O. Madsen, W.W. de Jong and M.J. Stanhope, 2001. Mitochondrial versus nuclear gene sequences in deeplevel mammalian phylogeny reconstruction. Mol. Biol. Evol., 18: 132-143. https://doi.org/10.1093/oxfordjournals.molbev.a003787
  18. Springer, M.S., L.J. Hollar and A. Burk, 1995. Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol. Biol. Evol., 12: 1138-1150.
  19. Steppan, S.J., R.M. Adkins, P.Q. Spinks and C. Hale, 2005. Multigene phylogeny of the old world mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Mol. Phylogenet. Evol., 37: 370-388. https://doi.org/10.1016/j.ympev.2005.04.016
  20. Suzuki, H., K. Tsuchiya and N. Takezaki, 2000. A molecular phylogenetic framework for the Ryukyu endemic rodents Tokudaia osimensis and Diplothrix legata. Mol. Phylogenet. Evol., 15: 15-24. https://doi.org/10.1006/mpev.1999.0732
  21. Swofford, D.L., 2001. $PAUP^{*} $. Phylogenetic analysis using parsimony $(^{*}and other methods)$. Version 4.0b8 (Sunderland, Massachusetts, Sinauer Associates).
  22. Thompson, J., D. Higgins and T. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res., 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  23. Yoon, M.H., S.H. Han, H.S. Oh and J.K. Kim, 2004. The Mammals of Korea. Dongbang Media, Seoul, pp. 106-144.

피인용 문헌

  1. Historical Review and Notes on Small Mammals (Mammalia: Erinaceomorpha, Soricomorpha, Rodentia) in Korea vol.30, pp.3, 2014, https://doi.org/10.5635/ASED.2014.30.3.159