Cytokine Production in Canine PBMC after Bartonella Henselae Infection

Bartonella Henselae 감염 후의 개 말초혈액단핵구에서의 사이토카인 양상

  • Choi, Eun-Wha (Laboratory Animal Research Center, Samsung Biomedical Research Institute) ;
  • Lee, Jong-Hwa (KRF Zoonotic Disease Priority Research Institute, Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Koo, Hye-Cheong (Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University) ;
  • Park, Yong-Ho (Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University) ;
  • Youn, Hwa-Young (KRF Zoonotic Disease Priority Research Institute, Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University)
  • 최은화 (삼성생명과학연구소 실험동물연구센터) ;
  • 이종화 (서울대학교 수의과대학 내과학교실) ;
  • 구혜정 (서울대학교 수의과대학 미생물학교실) ;
  • 박용호 (서울대학교 수의과대학 미생물학교실) ;
  • 윤화영 (서울대학교 수의과대학 내과학교실)
  • Accepted : 2010.08.03
  • Published : 2010.08.30

Abstract

Bartonella henselae is the causative agent of cat scratch disease. Although cats are the main zoonotic reservoirs of Bartonella spp., unusual cases of cat scratch disease caused by a domestic dog scratch have been recently reported. For the in vivo B. henselae infection, eight dogs were inoculated intradermally with $2{\times}10^8CFU$ of B. henselae Houston-1 suspended in 1 ml of phosphate buffered saline on day 0 and subsequent injections of the same amount given intradermally on days 21, 28, 36, 58 and 64. After in vivo canine B. henselae infection was confirmed by nested PCR, the IFN-$\gamma$ levels of the culture supernatant of PBMC stimulated with B. henselae was significantly higher in the B. henselae-PCR positive group than the B. henselae-PCR negative group. Our results showed that the canine immune responses against B. henselae were different from those of cats. Th1 activation by B. henselae stimulation was characterized in dog peripheral blood mononuclear cells, whereas Th2 activation was reported in B. henselae-infected cats.

Bartonella henselae 는 고양이할큄병의 원인체이다. 고양이가 Bartonella spp.의 주된 보유숙주이기는 하지만, 최근 애완견의 할큄에 의한 고양이할큄병 발생이 보고되었다. 8두의 개에 1 ml의 인산완충식염수에 부유한 $2{\times}10^8CFU$의 B. henselae Houston-1을 0일에 피내주사하고, 동량을 21, 28, 36, 58, 64일째에 추가로 피내주사 하였다. B. henselae 감염을 nested PCR을 통해 확인하였다. B. henselae-PCR 양성군이 음성군에 비해 B. henselae로 말초혈액단 핵구를 자극한 후 얻은 배양상청액에서의 IFN-$\gamma$ 농도가 유의성 있게 높았다. B. henselae자극시, Th1활성을 보이는 개 말초혈액단핵구의 면역양상은 Th2활성을 보인다고 알려진 고양이와는 다른 것으로 보인다.

Keywords

References

  1. Arvand M, Ignatius R, Regnath T, Hahn H, Mielke ME. Bartonella henselae-specific cell-mediated immune responses display a predominantly Th1 phenotype in experimentally infected C57BL/6 mice. Infect Immun 2001; 69: 6427-6433. https://doi.org/10.1128/IAI.69.10.6427-6433.2001
  2. Chen TC, Lin WR, Lu PL, Lin CY, Chen YH. Cat scratch disease from a domestic dog. J Formos Med Assoc 2007; 106(2 Suppl): S65-68.
  3. Chung JY, Han TH, Kim BE, Kim CK, Kim SW, Hwang ES. Human metapneumovirus infection in hospitalized children with acute respiratory disease in Korea. J Korean Med Sci 2006; 21: 838-842. https://doi.org/10.3346/jkms.2006.21.5.838
  4. Gentili F, Chilosi M, Doglioni C, Ponzi AN, Sozzani S, Musso T. Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood 2006; 107: 454-462. https://doi.org/10.1182/blood-2005-04-1342
  5. Gundi VAKB, Bourry O, Davoust B, Raoult D, La Scola B. Bartonella clarridgeiae and B. henselae in Dogs. Gabon Emerg Infect Dis 2004; 10: 2261-2262.
  6. Guptill L, Slater L, Wu CC, Glickman LT, Lin TL, Welch DF, Crippen JT, HogenEsch H. Immune response of neonatal specific pathogen-free cats to experimental infection with Bartonella henselae. Vet Immunol Immunopathol 1999; 71: 233-243. https://doi.org/10.1016/S0165-2427(99)00104-X
  7. Hayashiya S, Tani K, Morimoto M, Hayashi T, Hayasaki M, Nomura T, Une S, Nakaichi M, Taura Y. Expression of T helper 1 and T helper 2 cytokine mRNAs in freshly isolated peripheral blood mononuclear cells from dogs with atopic dermatitis. J Vet Med A Physiol Pathol Clin Med 2002; 49: 27-31. https://doi.org/10.1046/j.1439-0442.2002.00413.x
  8. Kabeya H, Sase M, Yamashita M, Maruyama S Predominant T helper 2 immune responses against Bartonella henselae in naturally infected cats. Microbiol Immunol 2006; 50: 171-178.
  9. Kabeya H, Yamasaki A, Ikariya M, Negishi R, Chomel BB, Maruyama S. Characterization of Th1 activation by Bartonella henselae stimulation in BALB/c mice: Inhibitory activities of interleukin-10 for the production of interferon-gamma in spleen cells. Vet Microbiol 2007; 119: 290-296. https://doi.org/10.1016/j.vetmic.2006.08.010
  10. Karem KL. Immune aspects of Bartonella. Crit Rev Microbiol 2000; 26: 133-145. https://doi.org/10.1080/10408410008984173
  11. Keret D, Giladi M, Kletter Y, Wientroub S. Cat-scratch disease osteomyelitis from a dog scratch. J Bone Joint Surg Br 1998; 80: 766-767. https://doi.org/10.1302/0301-620X.80B5.8823
  12. Kim YS, Seo KW, Lee JH, Choi EW, Lee HW, Hwang CY, Shin NS, Youn HJ, Youn HY. Prevalence of Bartonella henselae and Bartonella clarridgeiae in Cats and Dogs in Korea. J Vet Sci 2009; 10: 85-87. https://doi.org/10.4142/jvs.2009.10.1.85
  13. McCord AM, Resto-Ruiz SI, Anderson BE Autocrine role for interleukin-8 in Bartonella henselae-induced angiogenesis. Infect Immun 2006; 74: 5185-5190. https://doi.org/10.1128/IAI.00622-06
  14. McGuirk P, Mills KH. Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol 2002; 23: 450-455. https://doi.org/10.1016/S1471-4906(02)02288-3
  15. Musso T, Badolato R, Ravarino D, Stornello S, Panzanelli P, Merlino C, Savoia D, Cavallo R, Ponzi AN, Zucca M. Interaction of Bartonella henselae with the murine macrophage cell line J774: infection and proinflammatory response. Infect Immun 2001; 69: 5974-5980. https://doi.org/10.1128/IAI.69.10.5974-5980.2001
  16. Pons I, Sanfeliu I, Quesada M, Anton E, Sampere M, Font B, Pla J, Segura F. Prevalence of Bartonella henselae in cats in Catalonia, Spain. Am J Trop Med Hyg 2005; 72: 453-457.
  17. Rampersad JN, Watkins JD, Samlal MS, Deonanan R, Ramsubeik S, Ammons DR. A nested-PCR with an Internal Amplification Control for the detection and differentiation of Bartonella henselae and B. clarridgeiae: an examination of cats in Trinidad BMC Infect Dis 2005; 5: 63. https://doi.org/10.1186/1471-2334-5-63
  18. Regnath T, Mielke ME, Arvand M, Hahn H. Murine Model of Bartonella henselae Infection in the Immunocompetent Host. Infect Immun 1998; 66: 5534-5536.
  19. Schmid MC, Schulein R, Dehio M, Denecker G, Carena I, Dehio C. The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol 2004; 52: 81-92. https://doi.org/10.1111/j.1365-2958.2003.03964.x
  20. Tsukahara M, Tsuneoka H, Iino H, Ohno K, Murano I. Bartonella henselae infection from a dogs. Lancet 1998; 352: 1682. https://doi.org/10.1016/S0140-6736(05)61455-9
  21. Vermi W, Facchetti F, Riboldi E, Heine H, Scutera S, Stornello S, Ravarino D, Cappello P, Giovarelli M, Badolato R, Zucca M, Gentili F, Chilosi M, Doglioni C, Ponzi AN, Sozzani S, Musso T. Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood 2006; 107: 454-462. https://doi.org/10.1182/blood-2005-04-1342